
Articles
https://doi.org/10.1038/s41589-018-0088-2

1National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 
China. 2Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, 
Haifa, Israel. 3Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey. 4Department of Biochemistry and 
Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. 5These authors contributed equally: Min Yang, Nurit Livnat 
Lavanon. *e-mail: bental@tauex.tau.ac.il; halilogt@boun.edu.tr; lewinson@technion.ac.il

ABC transporters are ubiquitous proteins that harness the 
energy of ATP hydrolysis to move a diversity of molecules 
through cell membranes1–3. They are involved in numer-

ous physiological processes1,4–9 and are directly linked to human 
diseases, to tumor resistance to chemotherapy, and to bacterial 
virulence7,10–12. An ABC transporter is minimally composed of two 
intracellular nucleotide-binding domains (NBDs) that bind and 
hydrolyze ATP and two transmembrane domains (TMDs) that 
form the permeation pathway (Fig. 1a)13. ABC transporters that 
function as importers require a substrate-binding protein (SBP), 
which recognizes the substrate with high affinity and delivers it 
to the TMDs14,15. The mechanism of action of ABC transporters is 
described by the ‘alternating access’ model6,13,16, in which ATP bind-
ing and hydrolysis drive the opening and closing of the NBDs17, 
which in turn leads to transition of the TMDs between the inward 
and outward facing conformations.

It is broadly recognized that the dynamics and rates of conforma-
tional changes are fundamental properties of enzyme catalysis and 
protein function18. However, the experimental exploration of con-
formational dynamics is difficult and often requires single-molecule 
approaches. The ability to watch single molecules provides unique 
information on conformational distributions, resolves heteroge-
neous samples, and records asynchronous conformational changes 
that would be obscured in bulk measurements19–23. There are very 
few reported single-molecule studies of ABC transporters23–26, and 
therefore our understanding of the conformational dynamics of 
ABC transporters remains limited.

Here, we combined single-molecule Förster resonance energy 
transfer (smFRET) and a newly developed molecular simulation 
approach to investigate the conformational dynamics of BtuCD-F, the 
Escherichia coli vitamin B12 ABC importer26. BtuCD-F is one of the best-
characterized ABC transporters, serving as a model for ABC import-
ers of heme and iron siderophores27–30, as well as for ABC importers of 
transition metals, which are essential for bacterial virulence10,31.

We found that the conformational dynamics of BtuCD-F are very 
different from those reported for secondary transporters, revealing 
a transporter of conformational homogeneity, with tight coupling 
between conformational changes and ligand binding.

Results
Single-molecule measurements. To measure smFRET, we intro-
duced single cysteines to Cys-less BtuCD at positions that have low 
sequence conservation and are distant to known functional sites. 
We chose positions that are compatible with the Förster distance of 
the Cy3–Cy5 donor–acceptor pair and that are expected to undergo 
movements of ~1 nm upon binding of ATP and/or BtuF29,32–34. 
Because BtuCD is a homodimer, a single genetic mutation results in 
twin substitutions at the protein level. We selected mutants that were 
efficiently and specifically labeled and had wild-type levels of pre- 
and post-labeling activity (Supplementary Fig. 1; Supplementary 
Table 1). The fluorescently labeled mutants displayed low anisot-
ropy (Supplementary Table 2), indicating that the rotation of the 
dyes is not substantially limited by the protein and that FRET 
modifications can be used to monitor conformational changes. For 
analysis, we chose mutants located at the NBDs (S67C) and at the 
cytoplasmic (R138C) and periplasmic (Q109C) sides of the TMDs 
(Fig. 1a). Initially, all measurements were conducted in detergent 
solution using the same detergent that was used for determination 
of all BtuCD-F crystal structures29,32–34. Next, to mimic the mem-
brane environment, we reconstituted BtuCD into nanodiscs35,36. In 
both detergent and nanodiscs, labeled transporters were specifi-
cally immobilized to a microfluidic surface (Fig. 1b; Supplementary  
Fig. 2), and single molecules were imaged using total internal reflec-
tion fluorescent (TIRF) microscopy.

Conformational dynamics of the nucleotide binding domains. 
Averaged histograms were generated from hundreds of smFRET 
time traces of single BtuCD S67C (NBDs located) molecules. Such 
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histograms represent the conformational distribution of the popu-
lation of molecules for a given experimental condition. Initially, to 
simplify the interpretation, we conducted the measurements under 
equilibrium conditions and trapped the transporter in the vari-
ous steps of the catalytic cycle. To push the population of BtuCD 
molecules toward complete conformational changes, we added 
the nucleotides at saturating concentrations30,37,38. In the absence 
of ligands (apo state), we observed a single population of trans-
porter molecules with a low average smFRET of ~0.25 (Fig. 2a; 
Supplementary Table 3). To induce the prehydrolysis ATP-bound 
state, we added ATP (in the absence of Mg2+) or the nonhydro-
lyzable ATP analog AMP-PNP-Mg2+. In both cases, a uniform 
population of molecules that had shifted to a higher FRET state of 
~0.35 was observed (Fig. 2b,c; Supplementary Table 2), indicating 
a reduced distance between the twin S67 residue pair and closure 
of the NBDs. An identical smFRET distribution was observed in 
the posthydrolysis high-energy intermediate state (in the pres-
ence of ATP-vanadate-Mg2+; Fig. 2d). This indicates that in both 
the pre- and posthydrolysis states the NBDs are closed. Next, we 
tested the effects of docking of BtuF on the conformational state 
of the NBDs. This was performed in two different ways: in one 
procedure, we isolated the stable BtuCD-F complex30,37 and then 
immobilized the BtuCD-F complex to the microfluidic surface. 
In another protocol, we immobilized apo BtuCD and then added 
1–10 μ M of BtuF. Using either protocol we did not observe any 
effect of BtuF on the smFRET state of the NBDs, regardless of 
whether ATP was bound or not (Fig. 2b,e,f; Supplementary Table 3).  
Taken together, these results demonstrate that the closure of the 
NBDs is independent of BtuF docking yet fully dependent on bind-
ing of ATP. Notably, in each of the tested conditions, we observed 
only one dominant population of BtuCD molecules, which read-
ily fit a single Gaussian distribution (Fig. 2a–f, solid black traces). 
This conformational homogeneity differs from the conformational 
heterogeneity observed for the ABC exporters BmrCD, Pgp, and 
TM287/288 (refs 39–41). Such conformational homogeneity implies a 
considerable energy difference between the open and closed NBD 
conformations. If the energetic difference had been small, several 
FRET states would have been present in each condition. The time 
traces of individual BtuCD molecules revealed that the NBDs do 
not spontaneously fluctuate between their open and closed states, 
and this ‘conformational stability’ was observed in all of the tested 
conditions (Fig. 2g). In thousands of traces, we did not detect 

clear dwell times in more than one conformation. This tight cou-
pling between closure of the NBDs (and hence formation of the 
ATP binding site) and the presence of ATP strongly suggests an 
induced-fit mechanism for this conformational change. However, 
we cannot exclude the possibility that spontaneous conformational 
fluctuations occur on a time scale that is faster than our maximal 
temporal imaging resolution (50 ms). To induce spontaneous fluc-
tuations, we added subsaturating concentrations of nucleotides. 
In the presence of 1 nM ATP (in the absence of Mg2+), we did not 
observe clear conformational fluctuations: the individual traces 
were practically identical to those observed in the apo state (Fig. 3a,  
top panel), and the FRET state of the population was similar to that 
observed in the absence of bound ATP (compare Fig. 3a to Fig. 2a).  
However, at 50 nM ATP we observed short-lived transitions to 
the NBDs closed state (Fig. 3b, top panel), yet these short fluctua-
tions did not significantly affect the population ensemble-averaged 
FRET state (Fig. 3b, bottom panel). At 1 μ M ATP, we observed 
extended dwell times at the closed NBD state (Fig. 3c, top panel) 
and increased population heterogeneity, and found that the FRET 
state of the population was similar to that of ATP-bound BtuCD 
(compare Fig. 3c, bottom panel, to Fig. 2b, left panel). That the 
majority of the molecules had closed their NBDs in the presence 
of 1 μ M ATP suggests that the ATP-binding affinity is significantly 
higher than the apparent affinity of 20 μ M that was inferred from 
the Michaelis–Menten constant (Km) derived from ATP hydrolysis 
assays38. To corroborate that the occupancy of the high FRET state 
is in line with the KD for ATP, we measured it directly by using iso-
thermal titration calorimetry and determined a KD of 0.3 ±  0.17 μ M 
(Fig. 3d), which agrees with the near complete reversion to the high 
FRET state observed at 1 μ M ATP.

To gain insight into the rate of closure of the NBDs in the presence 
of physiological ATP concentrations (millimolar range42), we con-
ducted nonequilibrium experiments wherein during the imaging 
we added 1 mM ATP (in the absence of Mg2+) to apo BtuCD. A clear 
reversion to the high FRET state (corresponding to the closure of the 
NBDs) was observed upon addition of the nucleotide (Fig. 3e–g).  
In ~25% of the molecules, 1 mM ATP concentration induced a con-
formational change that could not be temporally resolved using our 
maximal temporal resolution of 50 ms (Supplementary Fig. 3a,b). 
However, the conformational transition of > 50% of the molecules 
was resolved by several data points (Supplementary Fig. 3c–f), and 
from these transitions we estimate that the slower conformational 
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BtuCD is composed of a homodimeric transmembrane domain (yellow and blue) and a homodimeric nucleotide binding domain (green and red); BtuF is  
in orange. The labeled positions are shown as red and green spheres. Also shown are the crystal structure distances between the twin positions. b, Set up 
of smFRET measurements: Cy3–Cy5-labeled BtuCD is reconstituted into nanodiscs and is then immobilized to a streptavidin-treated, PEG-coated  
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changes occur on a time scale of 200–400 ms. Next, we conducted 
smFRET experiments in a membrane-mimetic environment using 
BtuCD reconstituted into nanodiscs34,36. The results obtained in the 
nanodiscs were largely similar to those obtained in detergent solu-
tion. Also in the nanodiscs, closure of the NBDs was fully depen-
dent on ATP binding, and docking of BtuF to apo BtuCD had little 
to no effect (Fig. 3h; Supplementary Fig. 4). In the nanodiscs, a 
tail of higher FRET values (FRET =  0.75–0.8) was present in all 
conditions (Supplementary Fig. 4). It is highly unlikely that such 
high values originate from FRET between the S67C twin residues 
(due to the distance between them) and likely stem from nonspe-
cific events43. A notable difference between the detergent solution 
and the nanodiscs was that only in the latter did binding of BtuF 
to ATP-bound BtuCD result in a slight, yet statistically significant 
decrease in smFRET (P =  2.96 ×  10−5, Kolmogorov–Smirnov test; 
Fig. 3h, compare magenta and blue curves; Supplementary Fig. 4,  
compare panels b and e). This implies that in the membrane-
mimetic environment, docking of BtuF leads to a partial opening  

of the NBDs, lowering the affinity of BtuCD to ATP, perhaps facili-
tating nucleotide release. This suggestion is thermodynamically 
compatible with the experimentally observed reciprocal effect in 
which the release of BtuF and other SBPs of type-II ABC importers 
is driven by ATP binding and hydrolysis26,28,37,44,45. Using the nano-
discs, we also tested for the effects of the transport substrate (vita-
min B12), and found that it had little to no effect on the smFRET 
measured at the NBDs (Fig. 3h, red vs. green and blue vs. olive-
green curves). These results are in line with previous reports of the 
vitamin having minimal effect on the conformations and ATPase 
activity of BtuCD26,30,37. As observed in detergent, in the nano-
discs we did not observe spontaneous fluctuations between the 
open and close states of the NBDs in any of the tested conditions 
(Supplementary Fig. 5).

Taken together, these results demonstrate that in both detergent 
and nanodiscs the NBDs close only upon ATP binding and open 
only upon its release, and that they do not spontaneously fluctuate 
between the open and closed states.
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Conformational dynamics of the transmembrane domains. In the 
transition from the outward- to the inward-facing conformations of 
BtuCD, the periplasmic ends of TM helices 3 and 4 swing inward, 
whereas their cytosolic ends swing outward29,32–34 (Supplementary 
Fig. 6). This motion is part of a collective rearrangement of the 
TMDs that seals the translocation cavity to the periplasm while 
partially opening it to the cytoplasm. To monitor this motion, we 
labeled residues R138C and Q109C located at the cytoplasmic 
and periplasmic ends of TM helix 4, respectively (Fig. 1a). These 
two residues are expected to move in opposite directions in the 
outward-to-inward transition (Supplementary Fig. 6) and provide 
complimentary information on the orientation of the TMDs.

In both detergent and nanodiscs, BtuF docking led to a confor-
mational change that increased the smFRET between the Q109C 
labels, signifying that the periplasmic side of the TMDs had closed 
(Fig. 4a). In contrast, the cytosolic side of the TMDs was largely 
unaffected by docking of BtuF (Fig. 4b). ATP binding led to the 
opening of the cytoplasmic side of the TMDs (Fig. 4b) yet had little 
effect on their periplasmic side (Fig. 4a). Therefore, ATP and BtuF 
demonstrate complimentary roles in controlling the conformational 
status of the TMDs, with BtuF controlling the periplasmic side of 
the TMDs and ATP regulating their cytoplasmic side. These results 
are in excellent agreement with previous ensemble EPR and DEER 
studies of BtuCD-F45,46. As observed at the NBDs, the presence of the 
substrate (vitamin B12) had no effect on the conformation at either 
side of the TMDs (Fig. 4a,b). Notably, for the Q109C label, the ampli-
tude of the FRET changes was larger in the membrane environment 
than in detergent (Fig. 4a; Supplementary Table 3). In apo BtuCD, 

the FRET at the periplasmic side (Q109C) was 0.45 in nanodiscs 
and 0.5 in detergent (P =  0.042; Fig. 4a; Supplementary Table 3).  
This wider periplasmic opening at the apo state was correlated with 
a much tighter periplasmic seal upon docking of BtuF ±  ATP (FRET 
of ~0.72 in nanodiscs vs. ~0.58 in detergent, P =  3.45 ×  10−28; Fig. 4a; 
Supplementary Table 3). The observed differences may arise from 
differences in dye-tumbling behavior in the various environments. 
However, anisotropy measured in detergent and in nanodiscs 
revealed no systematic trend that could account for these differ-
ences (Supplementary Table 2). In addition, the anisotropy values 
(r =  0.186–0.233) are consistent with considerable randomization of 
dye orientation on the 50-ms time scale of imaging.

These results suggest that in the membrane, relative to what 
is observed in the crystal structures, ligand-free outward-facing 
BtuCD is more open to the periplasm and closes more tightly upon 
binding of BtuF and ATP (Fig. 4c). As observed for the NBDs, we 
did not see spontaneous smFRET fluctuations of the TMDs, imply-
ing tight coupling between the conformational changes and the 
binding of ligands (Fig. 5a–d). To capture dynamic events of con-
formational transitions in the TMDs, we conducted experiments 
in which vitamin B12 was added in 20:1 molar excess over BtuF, 
which greatly accelerates the koff of BtuF from BtuCD37. Under 
these conditions, we were able to observe spontaneous transitions 
between the closed and open states of the TMDs (Fig. 5e). We also 
performed nonequilibrium experiments in which BtuF was added 
during the imaging to apo BtuCD, and observed a clear switch of 
single molecules to the higher FRET state, indicating closure of the 
periplasmic side of the TMDs (Fig. 5f). The closure of the TMDs 
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was also apparent at the level of the population (Fig. 5g), dem-
onstrating that the onset and rates of the conformational changes 
are fairly synchronized across the population of the single mol-
ecules. Taken together, these results show that the conformational 
changes at the TMDs are tightly linked to ligand binding and do 
not occur spontaneously.

Transient movements allow delivery of vitamin B12. The crystal 
structure of apo BtuCD is interpreted as representing an outward-
facing conformation29. However, in this conformation, the periplas-
mic access to the translocation cavity is blocked by a gate formed 
by leucine 172 from each BtuC monomer (Supplementary Fig. 7a);  
namely, it represents an occluded, outward-facing conformation. 
In this conformation, there is a steric clash between the L172 gate 
residues and the BtuF-bound vitamin B12 (Supplementary Fig. 
7b), making docking of BtuF practically impossible. In the ATP-
bound34 and ATP/BtuF-bound33 states this steric class persists, and 
the translocation cavity remains blocked by the L172 gate resi-
dues. This highlights an unresolved mechanistic enigma: how is 
vitamin B12 delivered to the translocation cavity? Enhancing this 
conundrum, the results reported herein demonstrate that all of the 
conformational changes from the apo (outward-occluded) state 
lead to conformations that are yet more closed. It is possible that 
during the ATPase cycle, or during the initial association of BtuF 
with BtuCD, the L172 gate residues transiently move apart to allow 
passage of vitamin B12 and then re-seal the translocation cavity  
(as observed in all the crystal structures). Such conformational 
changes may remain undetected by smFRET if the changes in dis-
tance are small or if the rate of opening and closing exceeds the tem-
poral resolution of imaging. To explore these possibilities, we sought 
to apply a computational approach. However, the ~200-μ s duration 
of molecular dynamics (MD) simulations is too short for studying 
the conformational changes of BtuCD that occur on a timescale 
of hundreds of milliseconds (Figs. 3e–g and 5f,g; Supplementary 
Fig. 3). We therefore developed a novel methodology that inte-
grates low-resolution α -carbon based anisotropic network model 
(ANM)47 with stochastic all-atom implicit solvent Langevin dynam-
ics (LD) simulations48. In this hybrid approach (ANM–LD), an 
explicit definition of time is waived for the sake of enhanced sam-
pling of the conformational space. Therefore, one cannot deduce 

the rates of conformational changes, yet the trajectory of confor-
mational transition can be calculated (see Supplementary Fig. 8 and 
Methods for more details). We constructed a complete atomistic 
view of the conformational changes that occur upon binding of 
BtuF and/or ATP (Supplementary Videos 1–3). From these simu-
lations, we extracted the distance between the L172 gate residues 
during the transport cycle. Individually, BtuF and ATP had oppo-
site effects on the opening of the periplasmic gate: docking of BtuF 
led to its tighter closure, whereas ATP binding led to its opening 
(Fig. 6a). However, the combined and complementary effects of 
ATP and BtuF are revealed when both bind simultaneously—i.e., 
in the transition between the apo and ATP +  BtuF-bound states. In 
the first ~20 cycles of this transition, the distance between the L172 
twin residues remains fairly constant. Then, the two residues steeply 
move apart and remain open for ~30 cycles before rapidly collaps-
ing back to their initial closed conformation. This transient opening 
is unique to the periplasmic gate L172 pair, as we could not identify 
any other TMD residue that displays this pattern. This suggests that 
during the transition from the apo to the ATP/BtuF-bound state, 
ATP binding drives the transient opening of the periplasmic gate 
(to allow delivery of vitamin B12) and BtuF drives its re-closure (to 
prevent escape of vitamin B12). Next, we tried to identify the spe-
cific movements in BtuCD that enable substrate delivery. We exam-
ined the ensemble of isolated movements that together comprise 
the complete conformational transition and pinpointed two spe-
cific movements that are responsible for the transient opening of 
the periplasmic gate and delivery of the vitamin from BtuF to the 
translocation cavity. In the first mode of movement, the L172 pair 
moves sideways in an antiparallel manner, leading to the opening 
of the gate (Supplementary Video 4). Another important aspect of 
this movement is the downward and outward tilt of the periplasmic 
loop that connects TM helices 2 and 3 (Supplementary Video 4). 
The movement of this loop clears the way for the oncoming SBP and 
prepares the periplasmic surface for the docking of its helices 3 and 
8 (ref. 32). In the second mode of movement, the L172 pair moves up 
in parallel (Supplementary Video 5), increasing the steric clash with 
BtuF-bound vitamin B12 and abolishing its binding site. The TM2–
TM3 loops closes back to lock on the now-docked SBP. Combined, 
these two modes of movements act as a claw crane: first, the claws 
open, and then swoop upward to clutch their prize.
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A ‘squeezing mechanism’ pushes the vitamin inwards. We next 
used the simulations to decipher the sequence of events that occur 
during the transition from the apo state to the BtuF/ATP-bound 
state. For this, we monitored the shifts in Cα -Cα  distances (Cα r) 
for the Q109, R138, and S67 pairs, as well as for the cytoplasmic 
gate residue S143. Not surprisingly, the movements of the residues 
located at the cytosolic side of the TMDs (R138 and S143) progress 
along parallel vectors and at the same rate (Fig. 6b, top). Attesting to 
the long-range allosteric connectivity in BtuCD, S67 (in the NBDs) 
and Q109 (periplasmic side of the TMDs) move along closely paral-
lel vectors (Fig. 6b) despite the ~50 Å that separate them. Figure 6b  
reveals that there is a delay between the closing of the periplasmic 
side of the TMDs and the opening of their cytosolic side: in the 
first 20 cycles of the transition, the Cα r of Q109 (periplasmic side 
of the TMDs) decreased by ~6 Å, whereas the Cα r of the R138 pair 
(cytosolic side of the TMDs) did not change. At this point (~cycle 
20), the L172 residues started to move apart (Fig. 6a), allowing 
access of vitamin B12. By cycle 35 the translocation cavity was fully 
accessible, and vitamin B12 could be transferred from BtuF to the 
transporter. By this point, the Q109 residues had already closed 

by ~8 Å, during which time the cytosolic residues R138 and S143 
hardly moved (Fig. 6b).

The observation that the closing of the periplasmic side of the 
TMDs precedes the opening of their cytosolic side is also apparent 
in the two helices that line the translocation pathway. In the first 
25 cycles of the simulation, the periplasmic sides of TM helices  
5 and 5a move ~6 Å closer together, during which time their cyto-
solic side remains closed (Fig. 6c, compare cycles 0 and 25). In the 
next 20 cycles, the squeeze that originates from the periplasm con-
tinues: the periplasmic sides of TM helices 5 and 5a have by now 
constricted by more than 9 Å, whereas their cytosolic sides opened 
by less than 3 Å (Fig. 6c, cycle 45). The complete opening toward 
the cytosol occurs much later (Fig. 6c, cycle 150). Interestingly, dur-
ing the whole simulation the distance between the residues that 
are situated at mid-height of TM helices 5 and 5a does not greatly 
change (Fig. 6c), leaving just enough space (14–15 Å) for the pas-
sage of vitamin B12. To obtain a view of the time-dependent changes 
in the volume and shape of the translocation cavity, we combined 
the program HOLLOW49 with our hybrid ANM–LD approach. 
We observed that Met180 of BtuC divides the translocation cav-
ity to an upper and a lower compartment (Fig. 6d; Supplementary 
Video 6). As the conformational transition from the apo state to the 
BtuF/ATP-bound state progresses, the volume of the upper com-
partment shrinks, whereas that of the lower compartment remains 
largely unchanged (Fig. 6d; Supplementary Video 6). Shrinking of 
the upper compartment leads to an increased local concentration of 
vitamin B12. Because at this point the translocation cavity is sealed to 
the periplasm by the L172 gate residues, a concentration gradient is 
formed, directed from the smaller volume (and high local substrate 
concentration) of the upper compartment toward the larger volume 
and substrate-free lower compartment.

Discussion
All available evidence suggests that in the absence of BtuF and vita-
min B12, BtuCD constantly hydrolyzes ATP30,36–38. In this transport-
uncoupled conformational cycle, the NBDs fully open and close and 
the L172 gate residues fluctuate between their lower-occluding and 
upper-open positions (Fig. 6e, steps I and II). The cytoplasmic gate 
opens and closes, yet the movement of the TMDs is mostly restricted 
to their cytoplasmic side, whereas their periplasmic side maintains 
its outward-facing conformation. BtuF has the highest affinity to 
nucleotide-free BtuCD26,37,45, and therefore BtuF likely docks to apo 
BtuCD. Docking of BtuF initiates the transport-coupled conforma-
tional cycle, which begins with the BtuF-driven gradual constriction 
of the periplasmic side of the TMDs and is closely followed by the 
ATP-driven gradual closure of the NBDs (Fig. 6e step III, and first 
~10 cycles of Fig. 6b). The closure of the NBDs drives the upward 
movement and opening of the periplasmic gate residues (Fig. 6e 
step IV), increasing the steric clash with the BtuF-bound vitamin 
B12. BtuF cannot escape the grasp of BtuCD because the TM2–TM3 
loops have now swung back to lock on helices 3 and 8. The vita-
min B12 binding site in BtuF is now greatly disturbed because of the 
steric clash with the L172 residues. However, the gate is now open, 
allowing the passage of vitamin B12 to the translocation cavity. This 
sequence of events demonstrates how ATP binding and hydrolysis 
may be harnessed to solve the conundrum of the release of a ligand 
that is bound to the SBP with high affinity50 by a transporter that has 
no measurable substrate affinity37.

Once vitamin B12 is transferred to BtuCD, the periplasmic gate 
closes. The BtuF-driven closure of the periplasmic gate (Fig. 6a) 
starts at about the same time the cytosolic gate and cytosolic side 
of the TMDs reach their fully open positions (Fig. 6a,b cycle ~65;  
Fig. 6e step V). The NBDs continue to close, in parallel to the con-
tinuous squeeze originating from the periplasmic side of the TMDs.

The smFRET data suggest that BtuCD displays tight coupling 
between ligand binding and conformational changes, showing no 
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spontaneous conformational changes. It is possible that short-dwell 
spontaneous fluctuations occur on a time scale that precludes detec-
tion. We currently have no data to support or refute this possibility.

In all of the examined conditions, we observed one dominant 
population of transporter molecules. This conformational unifor-
mity is distinct from the conformational heterogeneity observed 
for the ABC exporters BmrCD, Pgp, and TM287/288 (refs 39–41) and 
from the spontaneous conformational fluctuations of the second-
ary transporters GltPH and LeuT19–22. Whether this dynamic pat-
tern is unique to BtuCD or shared by other transporters remains to  
be determined.

The ANM–LD approach allowed us to detect transient confor-
mational changes that are difficult to observe experimentally. We 
observed that the volume of the upper compartment of the trans-
location cavity shrinks around vitamin B12, whereas the volume of 
the lower compartment gradually increases. This creates a de facto 
intramembrane substrate concentration gradient, directed from 
the periplasm toward the intracellular side. In parallel, a ‘squeez-
ing’ effect is formed, as the constriction at the periplasmic side pre-
cedes the relaxation of the cytoplasmic side. We suggest that these  
phenomena are important mechanistic aspects that ensure the 

directional movement of vitamin B12. Interestingly, the periplasmic 
gate residue L172 and the Met180 residues that split the translo-
cation cavity into two compartments are highly conserved among 
BtuCD homologs, as well as in other type-II ABC transporters, sug-
gesting that the proposed mechanism is perhaps generally relevant.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41589-018-0088-2.
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Methods
Statistics. All experiments were repeated in at least three independent experiments, 
and the reported values are mean + /−  s.d. Error bars of histograms represent s.d. 
obtained by a bootstrap estimation approach with 100 samples. Comparison of two 
distributions was performed with the Kolmogorov–Smirnov test.

Molecular simulations. To explore the conformational transition pathways 
connecting functional states of BtuCD, we designed a hybrid molecular simulation 
methodology, ANM–LD, which integrates a low-resolution α -carbon-based 
anisotropic network model (ANM)47 with stochastic all-atom implicit solvent 
Langevin dynamics (LD) simulations48. ANM–LD utilizes the structure's intrinsic 
dynamics to guide functional conformational changes through the cycles of 
perturbations on the system in its dynamic (ANM) modes toward a target 
conformation, while taking advantage of the evaluation of the interactions and 
energetics of the system followed by short time LD simulations. The time window 
in ANM–LD simulations does not reflect the real time of the simulated transitions, 
yet provides information on the transition mechanism and the order of events 
that cannot be achieved with current computational methods such as molecular 
dynamics (MD) simulations. Moreover, having accessible internal dynamics as the 
only bias toward the target conformation enables the disclosure of physical and 
biological transition pathways.

In the present work, starting from the apo state of BtuCD (PDB ID 1L7V)29, 
three series of ANM–LD runs were performed toward the following target 
conformations: (i) the ATP-bound structure (PDB ID 4R9U)34, (ii) the ATP/
BtuF-bound structure (PDB ID 4FI3)33, and (iii) the BtuF-bound structure (PDB 
ID 2QI9)32. In the simulations, nucleotides and BtuF were removed from the 
PDB structures of BtuCD. The r.m.s. deviations of the final conformations from 
the target crystal structures were 1.4 Å, 1.5 Å, and 1.3 Å for the above mentioned 
conformational transitions, respectively. We observed very good repeatability in 
the conformational trajectory of a given transition in parallel simulations and 
present the results for a representative ANM–LD run.

In the hybrid framework of ANM–LD, an in-house program is used for  
the ANM calculations and consecutive call-outs of energy minimization and  
LD simulation steps to be performed in Amber 11-Sander51 biomolecular 
simulation package.

ANM-LD simulation protocol. With given initial and target structures, ANM–LD 
constructs the Hessian matrix for the current initial structure at each iteration 
cycle by setting a distance threshold radius (Rcut =  13 Å) to define the neighbor 
interactions between α -carbon atoms. The pseudoinverse of the Hessian matrix 
reveals 3N-6 intrinsic modes of motion47. By the application of a deformation 
factor (DF =  0.2 Å), an orthogonal transformation of the system is done in the 
ANM mode that overlaps most with the difference vector between the structurally 
aligned initial conformation of the current cycle and the target conformation. 
The resulting conformation is energy minimized for 500 steps and the generated 
perturbations on the system are relaxed by following 100 steps LD simulation 
of 0.2 fs length at temperature T =  310 K with the damping constant γ  =  5 ps−1. 
The time length (20 fs =  100 steps ×  0.2 fs) corresponds to the relaxation time of 
the perturbed structure by LD in each cycle. ANM and LD steps are iteratively 
performed until r.m.s. deviation to target conformation reaches a plateau. The 
schematic outline of ANM–LD method is given in Supplementary Fig. 8.

Validation of ANM–LD. ANM–LD simulations were run for a diverse data set 
of proteins from nonglobular to globular proteins, including membrane proteins 
(MalFGK transporter, the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), 
Usher protein FimD, and ClyA), where conformational transitions from initial 
RMSDs as high as 14 Å or 24 Å were predicted up to 1.4 Å r.m.s. deviation from 
their target states, using only the dynamic modes which are accessible to the 
structure and provided by ANM.

All PDB based figures and trajectory movies for ANM–LD simulation 
transition were created using PyMOL 1.3 (The PyMOL Molecular Graphics 
System, Version 1.3, Schrodinger, LLC.). Visualization of the translocation cavity 
was done using HOLLOW49.

Generation of Cys-less BtuCD and insertion of single cysteines. The plasmid 
encoding a nearly Cys-less BtuCD (which contains only Cys279) was a kind gift 
from K. Locher (ETH Zurich). We replaced this last endogenous cysteine with 
a serine residue by site-directed mutagenesis using QuikChange Lightning site-
directed mutagenesis kit (Agilent Technologies). We then inserted single cysteine 
residues into this complete cys-less BtuCD. All mutations/expression vectors were 
verified by sequencing before analysis.

Expression and purification of recombinant proteins. Single cysteine 
substitution mutants of BtuCD were expressed and purified as wild-type BtuCD, 
essentially as performed before29,36,37. Flag-BtuF was purified from osmotic shock 
extracts by size-exclusion chromatography.

BtuCD labeling. Cy3 and Cy5 maleimide (GE Healthcare) were mixed at a 1:1 
molar ratio, and the dye mixture was then added to the single cysteine variants 

to obtain a final dye:protein molar ratio of 10:1. Following 1 h incubation at 4 °C, 
the free dyes were removed by desalting and used immediately for imaging (for 
experiments and detergent) or reconstituted into nanodiscs and then imaged.  
To measure the labeling efficiency, a single dye (Cy3 or Cy5) was added at a final 
dye:protein molar of 10:1. Following 1 h incubation at 4 °C, the free dyes were 
removed by re-absorption to Ni-NTA beads followed by extensive washing. The 
labeled proteins were eluted with 250 mM imidazole, which was subsequently 
removed using a PD-10 desalting column with a MWCO of 7 KDa (Thermo 
Scientific). The labeling efficiency was then calculated using the known protein 
concentration, the Cy3 and Cy5 absorbance, and their respective extinction 
coefficients (Cy3550nm, 150,000 M–1 cm–1; Cy5650nm, 250,000 M–1 cm–1).

Functional assays. In vivo vitamin B12 utilization assays were performed as 
described in ref. 38. ATP hydrolysis was measured using Molecular Probes 
EnzCheck kit as described in refs 36,38, and BtuF binding to BtuCD was measured in 
a Biacore T200 platform (GE healthcare) as elaborated in refs 36,37.

Calorimetric measurements were performed with the MicroCal iTC200 System 
(GE Healthcare) at 25 °C. Changes in heat were recorded during a series of 20 
injections of 2 μ L aliquots of 70 μ M ATP (in the absence of Mg2+) into 200 μ L of 
6.7 μ M BtuCD in 50 mM Tris–HCl, pH 7.5, 150 mM NaCl, and 0.1% LDAO.

The reconstitution of BtuCD followed our established protocols37,38,52, using a 
protein:lipid ratio of 1:50 (W/W) and a 3:1 mixture of E. coli lipids and egg yolk 
PC. Detergent was removed by absorption to SM-2 biobeads (Bio-Rad), pre-
activated by washing with methanol, ethanol, and double-distilled water.

The proteoliposomes were then mixed with the components of an ATP 
regenerating system (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 2 mM MgCl2, 25 mM 
creatine phosphate, 2.5 mg/mL creatine kinase, and 2 mM ATP), and the mixture 
was frozen in liquid nitrogen and thawed in a room temperature (20–22 °C; three 
cycles), followed by 11 extrusions through polycarbonate filters (400 nm). The 
proteoliposomes were then washed once with ice-cold 50 mM Tris–HCl pH 7.5 and 
150 mM NaCl and kept on ice until use. Import of vitamin B12 into liposomes was 
measured at 33 °C essentially as we have done in the past using the rapid filtration 
method38, using 10 μ M 57Co-vitamin B12 (8 μ Ci/mL; MP Biomedicals), 0.2 μ M 
BtuCD, and 1 μ M BtuF. The amount of 57Co-vitamin B12 retained by the liposomes 
after a 20-min incubation was determined by gamma radiation counting.

Reconstitution of BtuCD into nanodiscs. The reconstitution of BtuCD into 
nanodiscs was performed essentially as described34,36. Briefly, BtuCD single-cys 
variants (prelabeled in detergent solution) were mixed with a membrane scaffold 
protein (MSP1-E3D1) and a 3:1 mixture of E. coli lipids and egg yolk PC to 
obtain a final molar ratio of 1:8:400 (BtuCD:MSP1-E3D1:lipids). The lipids were 
presolubilized with 4% Triton X-100 and bath-sonicated until clarity. The final 
concentration of Triton X-100 was adjusted to 1%, and following 45 min of gentle 
tilting in 22 °C, pre-activated Biobeads (see above) were added at 250 mg/mL. The 
beads were replaced twice by fresh ones after 15 min, and again after 30 min.

Anisotropy measurements. The steady state fluorescence anisotropy (r) was 
measured in bulk (HITACHI F-7000 spectrofluorometer) for Cy3 and Cy5 free in 
solution or attached to the single-cys variants of BtuCD. For the latter experiments, 
detergent-solubilized or nanodisc-reconstituted BtuCD was labeled with a single 
dye. The excitation and emission wavelengths were 554 nm and 568 (Cy3) and 
646 nm and 662 (Cy5).

Single-molecule FRET imaging experiments. Single-molecule FRET imaging 
experiments were carried out as described at refs 21,22. Glass coverslips and imaging 
chambers were passivated by a mixture of PEG and biotin-PEG and then coated 
by streptavidin (Invitrogen, 0.1 mg/mL). For imaging in detergent, the surface was 
further incubated with Biotin-NTA-Ni2+, following by incubation with 10–20 nM 
His-tagged labeled BtuCD. BtuCD nanodiscs were directly immobilized to the 
streptavidin-coated surface via biotin-PE.

Imaging was performed in 50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.1% 
LDAO, and an oxygen scavenging system consisting of 56 mM glucose, 100 nM 
glucose oxidase, 1.5 μ M catalase, and 1 mM cyclooctatetraene. Detergent was 
omitted for imaging of the nanodiscs. To trap the ATP-bound state, either 
1 mM adenosine 5′ -(β ,γ -imido) triphosphate (AMP-PNP, Sigma)/1 mM MgCl2 
or 1 mM ATP/50 µ M EDTA were added. To trap the intermediate state of ATP 
hydrolysis ATP, vanadate, and MgCl2 were all added at 1 mM. To determine the 
effects of binding of BtuF, the BtuCD-F complex was preformed and isolated by 
size-exclusion chromatography essentially as previously described30,37. Where 
appropriate, the preformed BtuCD-F complex was reconstituted into nanodiscs. 
Alternatively, in both detergent solution and in nanodiscs, 1–10 µ M (as indicated) 
BtuF was added directly to the imaging buffer. Identical results were obtained 
with both protocols. Fluorescence experiments were performed with a microscope 
objective-based total internal reflection fluorescent (TIRF) microscope, which is 
equipped with five lasers (405 nm, 488 nm, 532 nm, 561 nm and 647 nm) and two 
cooled EMCCD (Andor iXon Ultra). Photons emitted from the Cy3 and Cy5 dyes 
were collected using 1.49 NA 100×  objective (Olympus UAPON 100×  OTIRF),  
and Optosplit II (Cairn Research Limited) was used to separate spatially Cy3 
and Cy5 frequencies. Fluorescence data were acquired by Metamorph software 
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(Universal Imaging Corporation). Unless otherwise indicated, images were taken 
at 50 ms/frame.

Single-molecule FRET data analysis. Data analysis was performed essentially 
as previously described21,22, using the Software SPARTAN53. The Cy3 and 
Cy5 channels were mapped using TetraSpeck fluorescent microsphere beads 
(Invitrogen, 0.1 µ m). At least 10 beads were selected to get the transformation 
matrix for mapping by MatLab. Photobleaching events in each trace were 
detected as a significant drop (≥ 3 times s.d. of background noise) in the median 
filtered (window size =  9 frames) total fluorescence intensity (Itotal =  Icy3 +  Icy5) 
without returning to the previous average level. Signal-to-noise ratios (SNR) 
were calculated as total intensity relative to the s.d. of background noise: Itotal/
[stdev(Icy3) +  stdev(Icy5)]. Traces were selected to meet the following criteria: a single 
catastrophic photobleaching event, at least 8:1 signal-to-background noise ratio, a 
donor-to-acceptor Pearson's correlation coefficient <  0. Spectral bleed-through of 
Cy3 intensity on the acceptor channel was corrected by subtracting 7.5% of donor 
signal from the acceptor. FRET traces were calculated as: FRET =  ICy5/(ICy3 +  ICy5), 
where ICy3 and ICy5 are the instantaneous Cy3 and Cy5 fluorescence intensities, 
respectively. Contribution of the photophysical zero-FRET state in FRET 
histograms was removed by fitting the data to a two-state model (E1 =  0.1 ±  0.1 and 
E2 =  0.4 ±  0.1) with the segmental k-means algorithm54.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. In-house MATLAB scripts for the ANM-LD algorithm will be 
provided upon reasonable request.

Data availability. The data that support the findings of this study are available 
from the corresponding authors on reasonable request.
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