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ABSTRACT  

Motivation: Accurate prediction of protein stability is important for 

understanding the molecular underpinnings of diseases and for the 

design of new proteins. We introduce a novel approach for the pre-

diction of changes in protein stability that arise from a single-site 

amino acid substitution; the approach uses available data on muta-

tions occurring in the same position and in other positions. Our algo-

rithm, named Pro-Maya (Protein Mutant stAbilitY Analyzer), com-

bines a collaborative filtering baseline-model, Random Forests re-

gression and a diverse set of features. Pro-Maya predicts the stabil-

ity free energy difference of mutant vs. wild type, denoted as ∆∆G. 

Results: We evaluated our algorithm extensively using cross-

validation on two previously utilized datasets of single amino acid 

mutations and a (third) validation set. The results indicate that using 

known ∆∆G values of mutations at the query position improves the 

accuracy of ∆∆G predictions for other mutations in that position. The 

accuracy of our predictions in such cases significantly surpasses 

that of similar methods, achieving, e.g., a Pearson correlation coeffi-

cient of 0.79, and a root mean square error of 0.96 on the validation 

set. Because Pro-Maya uses a diverse set of features, including 

predictions using two other methods, it also performs slightly better 

than other methods in the absence of additional experimental data 

on the query positions. 

Availability: Pro-Maya is freely available via web server at 

http://bental.tau.ac.il/ProMaya. 

Contact: nirb@tauex.tau.ac.il, wolf@cs.tau.ac.il. 

1 INTRODUCTION 

Understanding the mechanisms by which mutations affect protein 

stability is important for characterizing disease mechanisms and 

for protein design (Bromberg and Rost, 2009). Hence, the energet-

ics of mutants has been studied extensively through experimental 

and theoretical approaches.  

The methods for predicting the change in a protein's stability 

(∆∆G) that results from a single amino acid mutation can be 

roughly classified according to the types of effective potentials 

they rely on: physical effective potentials (PEP), statistical effec-

tive potentials (SEP) and empirical effective potentials (EEP). 

Notably, none of these potentials explicitly takes into consideration 

relevant known mutations at the query position. PEP-based meth-

ods use atomic-level representations to capture the underlying 

physical phenomena affecting protein stability, e.g. van der Waals 

interactions and dihedral (torsion) angle (Prevost, et al., 1991; 

Seeliger and de Groot, 2010). These techniques are computation-

ally demanding and are not applicable to large datasets (Kollman, 

et al., 2000). SEP-based methods are based on the inverse Boltz-

mann law, which states that probability densities and energies are 

closely related quantities. Hence, these methods use datasets of 

proteins of known structures to calculate conditional probabilities 

that certain residues or atoms will appear in different contexts. 

Most SEP-based methods use pairwise potentials (Bahar and 

Jernigan, 1997; Samudrala and Moult, 1998; Sippl, 1995), though 

some studies have employed higher-order potentials; for example, 

(Vaisman, et al., 1998) used a four-body potential. SEP-based 

methods are computationally efficient, more robust than PEP-

based methods to low-resolution protein structure prediction and 

are suitable to include known and unknown physical effects 

(Lazaridis and Karplus, 2000). Methods in the third category 

(EEP-based) use experimental energy data to calibrate the weights 

of the energy function terms. The types of energy terms used can 

vary and might be SEP-, PEP-, physicochemically- or evolution-

based (Bloom and Glassman, 2009; Gilis and Rooman, 1997; 

Masso and Vaisman, 2010; Shen, et al., 2008). For example, PoP-

MuSiC-2.0 utilizes a neural network algorithm with SEP features 

that couple between the identity of the amino acid, secondary 

structure, accessibility and the spatial distance between amino 

acids (Dehouck, et al., 2009). Conversely, FoldX's (Guerois, et al., 

2002) energy function consists of PEP energy terms calibrated 

using a grid search method on experimental data. The recently 

developed Prethermut tool (Tian, et al., 2010) incorporates the 

energy terms of FoldX and MODELLER (Sali and Blundell, 1993) 

into a Random Forests machine regression, and has reached im-

pressive results. The use of a machine learning algorithm enables 

non-energy-like terms to be incorporated into the scoring function 

(Capriotti, et al., 2005; Cheng, et al., 2006; Montanucci, et al., 

2008). For example, both I-Mutant2.0 (Capriotti, et al., 2005) and 

MUpro (Cheng, et al., 2006) encode the identities of the wild type 
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and mutant amino acids in addition to the quantity (in I-Mutant2.0) 

or frequency (in MUpro) of the residue type found inside a sphere 

centered at the mutated residue. Both methods also offer sequence-

based predictions in cases where the protein structure is not avail-

able. For instance, Capriotti et al. added a description of the amino-

acid frequency within a symmetrical sequence window centered at 

the mutated residue and reached a prediction accuracy that was 

only slightly lower than that achieved using a structurally-based 

approach (Capriotti, et al., 2005). 

To assess the performance of prediction methods and to calibrate 

weights in EEP-based methods, several datasets of experimental 

energy values have been compiled. The main source is the 

ProTherm dataset (Kumar, et al., 2006). Capriotti et al. compiled a 

dataset of 1615 single-site mutations that has been used for cross-

validation procedures in several studies (Capriotti, et al., 2005; 

Cheng, et al., 2006; Masso and Vaisman, 2010). However, as pre-

viously indicated by Cheng et al., this dataset is highly redundant 

and may lead to unreliable predictions. Recently, two large non-

redundant datasets have been compiled by Potapov et al. (2009; 

Potapov-DB) and by Dehouck et al. (2009; PoPMuSiC-DB), con-

taining 2155 and 2648 mutations, respectively. The datasets com-

prise of ∆∆G measurements from thermal and denaturant denatura-

tion experiments. To avoid redundancy, each dataset considers 

only one ∆∆G value per mutant. In cases where numerous values 

have been obtained for a single mutant, Potapov et al. set the mu-

tant's ∆∆G as the mean of the measures, whereas Dehouck et al. 

determine this value using a weighted average, giving higher 

weights to measurements taken in physiological conditions (pH 

close to 7, temperature close to 25 °C and without additives). Thus, 

although the two datasets share 1405 common mutations, the ∆∆G 

values assigned to some of these differ.  

Preliminary examination of the PoPMuSiC-DB indicated that ∆∆G 

values of mutations occurring at the same protein position tend to 

cluster (data not shown), i.e., ∆∆G values of mutations in a given 

position are closer to each other, on average, than to ∆∆G values in 

other positions. This suggests making explicit use of known ∆∆G 

values to predict the effects of new mutations. To this end, we 

developed an approach based on adaptation of the baseline-model 

of the BellKor collaborative filtering algorithm (CF) (Koren, 

2008). To improve its accuracy we combined the baseline-model 

algorithm with a content-based model. The content-based model 

takes into account features of the mutation and its surrounding 

comprising of various sequence, structure, SEP- and EEP-based 

features. We benchmarked our algorithm extensively by carrying 

out cross-validation on the PoPMuSiC-DB and Potapov-DB data-

sets and by running it on an additional validation set. Statistical 

analysis of the results indicates that Pro-Maya surpasses all the 

compared methods both when additional ∆∆G values for the query 

position are available and when they are not.  

2 METHODS 

Our algorithm treats differently mutations at positions for which a ∆∆G 

value for a different mutant is known (denoted MRPM, Multi-Replacement 

Position Mutation) and at positions with no additional known recorded 

mutations at the query position (SRPM, Single-Replacement Position Mu-

tation). Given a query mutation of SRPM we follow the traditional machine 

learning scheme. Specifically, the query mutations is fed to a pre-calculated 

Random Forests regression model (Breiman, 2001) to predict the query's 

∆∆G, denoted as ∆∆GRF (described in 2.1). For MRPMs, as detailed in 

figure 1, the predicted ∆∆GRF is utilized as an input to an additional predic-

tion step using the integrated baseline and content-based model, denoted as 

the CFCB algorithm. The ∆∆GRF for the MRPMs is calculated using a 

Random Forests model retrained on a dataset comprising of the training 

dataset and the user reported ∆∆G records of mutations at the query posi-

tion. The input to the CFBC algorithm also includes a matrix representation 

of the known ∆∆G (described in 2.2) and a set of the features. Note, that 

the ∆∆GRF in our algorithm is utilized both for the prediction of SRPM 

mutations and as an input to the CFCB algorithm. The Pro-Maya algorithm 

predicts the ∆G change of the mutant vs. the wild type protein (i.e. Mutant-

WT). Thus, indicating both the magnitude of the stability change and its 

sign, i.e., whether the mutant is more or less stable than the wt. 

2.1 Calculation of ∆∆G
RF

  

The ∆∆GRF is calculated using the Random Forests R implementation 

(Liaw and Wiener, 2002) of WEKA (Frank, et al., 2004). The number of 

trees to grow was set to 650 since the addition of more trees did not change 

the performance. The number of random features to be searched at each 

tree node was the square-root of the number of features, i.e. 6. 

The Random Forests regression utilizes a total of 11 descriptors (F1-F11) 

with 30 dimensions, which can be roughly divided into sequence- and 

structure-based features as follows:  

Sequence-based features The multiple sequence alignment (MSA) holds 

important information regarding the physicochemical preference of the 

position in the protein. From the MSA we calculated the Position Specific 

Scoring Matrix (indicating the frequency of the amino acids in each MSA 

column) and used a physicochemical scale matrix to calculate the weighted 

average and standard deviation of a physicochemical property. Given a 

mutation, we measured the degree to which its physicochemical properties 

deviated from the mean physicochemical preference at the query position. 

Each query mutation was evaluated according to the following physico-

chemical properties (F1-F3): hydrophobicity scale (Kessel and Ben-Tal, 

2002), molecular weight and isoelectric point (Table S1, supplementary 

material). In addition, we added into the model the number of sequences in 

the alignment (F4).  

Based on a related study (Wainreb, et al., 2010), we added an additional 

descriptor measuring the sequence identity of the query protein to the clos-

est homolog bearing the mutant amino acid (denoted SIDCH) (F5). For 

example, mutation I48A in the Hordeum vulgare chymotrypsin (Uni-

ProtKB/Swiss-Prot ID: ICI2_HORVU) (The_UniProt_Consortium., 2010) 

was shown by (Jackson, et al., 1993) to cause a major destabilization of the 

protein. Fifteen homologous proteins with sequence identities of 31%-to-

47% to ICI2_HORVU feature the amino acid serine in the corresponding 

position. Here we set the SIDCH of I48A to 47%. We also included an 

array of 20 features (for 20 residue types) to encode the identity of the wild 

Figure 1. Prediction scheme for a query mutation with known ∆∆G values for 

additional mutations at the same position. (A) The input for this prediction 

scheme includes query (Q) and known (M) mutations at the query position. The 

∆∆G value for M is known. (B-E) Calculate the predicted ∆∆G of Q using the 

Random Forests algorithm. (F) Add the ∆∆G values of M to the appropriate 

elements in the energy matrix r, according to the MU identity and position of 

M. (G) Given the training set (matrix r), and the features (including the ∆∆G 

predicted by Random Forests) start the stochastic gradient descent and calculate 

the ∆∆G of Q (H). 
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type and mutant amino acids (F6). The features of the wild type and mutant 

amino acids were set to 1 or -1, respectively, and the rest of the features 

were set to 0. 

 

Structure-based features 

Average solvent accessibility: The side chain accessible surface area 

(calculated by NACCESS (Hubbard, et al., 1991)) was averaged over all 

the protein structures of the query protein (F7). In proteins for which an X-

ray crystal structure existed, all structures determined through nuclear 

magnetic resonance (NMR) were disregarded. 

Protein flexibility: To reflect the mobility of the protein's backbone at 

the mutated positions we used the B-factors of the crystal structure (F8). 

PEP-based features: We made use of ∆∆G values predicted by the 

Prethermut tool (Tian, et al., 2010) (F9). Prethermut uses a Random Forests 

machine learning algorithm and combines the energy terms of FoldX and 

MODELLER (Sali and Blundell, 1993). The energy terms are translated 

into units of standard deviation from the average of the energy terms calcu-

lated over all possible mutations of the whole protein. To calculate the 

Prethermut prediction value, we conducted a Random Forests regression 

over the original energy terms (calculated using the Prethermut scripts). As 

suggested by Tian et al. the number of trees to grow was set to 650 and the 

number of random features to be searched at each tree node was the square-

root of the number of features, i.e., 8. 

SEP-based features: The amino acid-specific torsion angle potential 

were calculated according to (Parthiban, et al., 2006) (F10). In addition, we 

utilized the PoPMuSiC-2.0 predicted ∆∆G value, calculated using the en-

ergy terms in (Dehouck, et al., 2009) and the Gaussian regression 

(Rasmussen and Williams, 2006) implementation of Weka (Frank, et al., 

2004) (F11). The Gaussian regression cross-validation results of PoPMu-

SiC-2.0 were comparable with the published results. The predicted PoP-

MuSiC-2.0 ∆∆G values for mutations that were absent from the Potapov-

DB were calculated using the PoPMuSiC-2.0 web server. 

 

2.2 Collaborative filtering and content-based algorithm 
(CFCB) 
Collaborative filtering and content-based recommender systems are used by 

many websites to generate personalized recommendations. For example, 

when a customer purchases an item on a retail website, such algorithms try 

to predict which other items the user would enjoy, on the basis of his/her 

past behavior and similarity to the behavior of other users. CF algorithms 

use only user–item data to make predictions. Conversely, content-based 

algorithms rely on the features of users and items for prediction.  

In recent years, the main driving force behind the development of CF algo-

rithms has been Netflix’s million-dollar prize for improving the perform-

ance of the site's recommendation system. Here, we chose to utilize a part 

of the CF solution of the winning group (named BellKor) (Koren, 2008). In 

order to improve the model's performance we extended it using a content-

based-model to take into account biological information regarding the 

mutations. 

In our CF scenario, there is a list of possible mutation outcomes (MU) (i.e. 

all possible amino acids), a list of mutation positions (defined by the pro-

tein and the residue number) and the experimental ∆∆G values for some of 

the mutations at these positions. The data can be stored in a sparse matrix r 

of size n × m, where n denotes the number of MUs and m denotes the num-

ber of positions. Each cell rui of the matrix r indicates the ∆∆G of a muta-

tion to amino acid u at position i (see, for example figure S1A, supplemen-

tary material). 

For clarity, special indexing letters u and i are reserved for distinguishing 

MUs and positions, respectively. 

 
2.2.1 The prediction models The BellKor CF algorithm (Koren, 

2008) tries to model the relations between the known data points in matrix 

r. The model's parameters are learned during the training procedure. The 

optimal model is later utilized to predict ∆∆G values of unknown mutations 

in positions with known ∆∆G values for other mutation. 

The BellKor model integrates three types of approaches to CF: a baseline 

model, a neighborhood model and the latent factor model. Our CFCB algo-

rithm integrates the BellKor baseline estimator model with a content-based 

model. We also implemented the neighborhood and latent factor models 

but according to our analysis their incorporation into the model does not 

improve the prediction accuracy significantly, although it might in certain 

cases (supplementary material). A schematic representation of all models 

can be seen in figure S1 in the supplementary material.  

 

2.2.1.1 The baseline estimator model Different MUs and positions 

have different ∆∆G tendencies. For example, the ∆∆G of a mutation at a 

buried position in a protein is usually larger than that of the same mutation 

at an exposed position. Similarly, we would expect that in most cases the 

consequences of mutation to proline would be more severe than a mutation 

to alanine. Hence, each position and MU is ascribed unique baseline esti-

mators, denoted bi and bu, respectively. Thus, for every rui we define a 

baseline estimator bui=µ+bi+bu, with µ denoting the overall average of all 

∆∆G in r. The variables bi and bu are learned during the training stage of 

the algorithm (described in section 2.2.2). 

 

2.2.1.2 The content-based model The baseline model does not use 

any explicit description of the mutation. In order to describe the biological 

aspects of the mutation we use a linear regression solution (with no inter-

cept) (equation 1) with a subset of the features (described in section 2.2): 

solvent accessibility, torsional statistical force field, Prethermut 

MODELLER-based features, the SIFT predicted compatibility of the mu-

tated amino acid to the query position (Ng and Henikoff, 2003), and ∆∆G 

predictions by PoPMuSiC-2.0, Prethermut. In addition we also use as a 

feature the ∆∆GRF. 

In equation 1, Xui is the set of d features (Xui,1, Xui,2 ... Xui,d), describing the 

mutation whose ∆∆G indices in matrix r are u and i. F denotes a set of d 

descriptor coefficients. As is often done in linear regression, each descrip-

tor is normalized across all positions and MUs so that its average is zero 

and the standard deviation is 1. F is learned during the training stage de-

scribed in section 2.2.2 using the stochastic gradient descent. 

 

2.2.1.3 The integrated model The integrated model (equation 2) 

combines the baseline- and content-based models. yui denotes the predicted 

∆∆G. 

 

2.2.2 The CFCB training and prediction procedures As in any 

machine learning algorithm the aim of the training procedure is to obtain 

parameters that fit the model to the observed data best. Unconventionally, 

the CFCB model is retrained for every server query in order to identify the 

parameters of the newly added user-reported mutations, e.g. the baseline 

estimator of the newly added position. The model with the optimized set of 

parameters presumably describes best the relations between the known 

∆∆Gs in matrix r and is used to predict the unknown MRPM queries. 

The training procedure is performed using a stochastic gradient descent 

algorithm that attempts to minimize the associated regularized squared 

error function (equation 3) and determines the following parameters: bu, bi, 

and F. Thus, starting with random values for the parameters, it randomly 

loops over all the known ∆∆G values in r (which is composed of all known 

mutations across all proteins in the training dataset) and modify the pa-

rameters by moving in the opposite direction of the gradient (equations 4). 

The descent iterations continue until the difference between the eui of the 

current iteration and the previous iteration is smaller than ε. During the 

training we used the following meta parameters: (learning rate) γ=0.02, 

(regularization factor) λ=0.025 and ε=0.00001. 

ui,g

0

Equation 2: X
d

ui ui g

g

y b F
=

= +∑

ui
Equation 1: XCon

ui
r F=
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2.3 The datasets and performance measurements 

 To train and assess our algorithm we utilized two publicly available data-

sets: the PoPMuSiC-DB with 2648 mutations in 137 proteins, and the Pota-

pov-DB with 2155 mutations in 79 proteins. Both datasets include ∆∆G 

values of non-redundant single site mutations (apart from a single mutation 

in Potapov-DB that was disregarded). Several Protein Data Bank (PDB) 

structures (NMR and Cα only structures) were replaced by others (Table 

S2, supplementary material). Both datasets have been previously used as 

benchmarks: Potapov-DB for Prethermut (Tian, et al., 2010) and PoPMu-

SiC-DB for PoPMuSiC-2.0 (Dehouck, et al., 2009).  

To fairly compare our method with Prethermut and PoPMuSiC–2.0, we 

followed their cross-validation protocols and used a 5- and 10-fold cross-

validation on the PoPMuSiC-DB and Potapov-DB sets, respectively. The 

randomly selected folds were maintained throughout the prediction scheme, 

i.e. the calculation of the Prethermut, PoPMuSiC-2.0, ∆∆GRF and CFCB 

prediction values. To calculate the average and SD for the performance 

measures, we used a bootstrap procedure with 1000 iterations. For each 

iteration we randomly selected 60% of the cross-validation ∆∆G predic-

tions. 

To further evaluate and compare our performance to that of other predic-

tion methods we also utilized the validation set compiled by Dehouck et al. 

(2009). This validation set includes 350 mutations from 67 different pro-

teins that were not included in any of the training databases of current 

methods (specified in Table S3, supplementary material). Here, the pre-

dicted ∆∆G values of Prethermut and PoPMuSiC-2.0, used as features in 

Pro-Maya's prediction scheme, were calculated using a 5-fold cross-

validation on PoPMuSiC-DB after removing the validation set. 

To assess how the number of mutations with known ∆∆G values in the 

query position affect the prediction accuracy we compared the performance 

of two leave-one-out (LOO) cross-validation variations named LOO-all and 

LOO-neglected. In each iteration of both procedures one query mutation 

was kept as a test and the rest of the mutations were used for training. 

However, during the LOO-neglect, randomly selected mutation occurring 

at the query position was neglected from the training set.  

To empirically estimate how well Pro-Maya can be generalized to unseen 

mutations it is important that the training and testing sets are as dissimilar 

as possible. Therefore, we performed an additional LOO variation, we 

name LOO-unseen. During each iteration of the LOO-unseen a single mu-

tation was kept for testing and the rest of the mutations in the query posi-

tion were used for training. Next, all the rest of the mutations that occur at 

proteins with a low sequence identity to the query protein (sequence iden-

tity < 30%) were added to the training set. 

At each iteration of LOO-all, LOO-neglected and LOO-unseen the ∆∆G 

prediction models of Prethermut and PoPMuSiC-2.0 had to be retrained 

with the modified training set. Since for the Potapov-DB we do not have 

the PoPMuSiC-2.0 statistical force field components (needed for the re-

training) all the LOO procedures were conducted solely on the PoPMuSiC-

DB for which we have the required PoPMuSiC-2.0 statistical force field 

components. 

To evaluate performance we used two standard measures: the Pearson 

correlation coefficient (PCC) and root mean square error (RMSE) between 

the measured and predicted ∆∆G values (Equations S7 and S8, Supplemen-

tary material). 

 

2.5 Data collection 

Both the sequences and the PDB file names required were extracted from 

the corresponding SWISS-PROT entries (Jain, et al., 2009). The MSAs and 

the PDB files were downloaded from the ConSurf-DB (Goldenberg, et al., 

2009) and PDB (Berman, et al., 2000) databases, respectively.  

3 RESULTS 

3.1 Cross-validation results  

According to the PCC and RMSE, Pro-Maya exhibits better per-

formance than FoldX, Prethermut and PoPMuSiC-2.0 for both the 

Potapov-DB and the PoPMuSiC-DB sets (Table 1; Figures S2, S3, 

supplementary material). Pro-Maya reached a PCC of 0.77 for both 

sets (column RF ∩ CF) and RMSE values of 1.09 and 0.94 for the 

Potapov-DB and PoPMuSiC-DB sets, respectively. These results 

are also superior to those obtained by CC/PBSA (Benedix, et al., 

2009), EGAD (Pokala and Handel, 2005), FoldX (Guerois, et al., 

2002), Hunter (Tian, et al., 2009), I-Mutant2.0 (Capriotti, et al., 

2005), Rosetta (Rohl, et al., 2004) and the combined method used 

by Potapov et al. (Potapov, et al., 2009) on the Potapov-DB (Table 

S4, supplementary material). 

To gain a more comprehensive understanding, we also examined 

the results on the MRPMs and SRPMs subsets of each of the two 

datasets. The results for the MRPM sets exhibit how well Pro-

Maya utilizes the ∆∆G data of known mutation(s) in a specific 

position to predict ∆∆G values of other mutations at the same site. 

As can be seen in Table 1, although all methods perform better on 

the MRPMs, our CFCB algorithm utilizes the training data best 

and reaches correlation values of 0.83 for the Potapov-DB set and 

0.82 for the PoPMuSiC-DB set.  

The results for the SRPM subset indicate the performance for mu-

tations at positions that are absent from the training set. For this 

mutation subset, our prediction scheme does not involve the CFCB 

algorithm and relies solely on the Random Forests regression and 

on the quality of the features. Here, our prediction scheme per-

forms slightly better than Prethermut and PoPMuSiC-2.0 on both 

Equations 4:

( )

( )

( )

ui ui ui

u u ui u

i i ui i

ui ui

e r r

b b e b

b b e b

F F e X F

γ λ

γ λ

γ λ

∧

• ← −

• ← + ⋅ − ⋅

• ← + ⋅ − ⋅

• ← + ⋅ ⋅ − ⋅

2 2 2 2

, ,
, 0

Equation 3:

min ( ) ( )
u i

d

ui ui u i g
b b F

u MU g
i Positions

r r b b Fλ
∧

∈ =
∈

− − + +∑ ∑

The Pearson correlation coefficient (PCC) and root mean square error (RMSE) of 

current methods and Pro-Maya's CFCB and Random Forests (∆∆GRF) prediction 

schemes on the PoPMuSiC-DB and Potapov-DB datasets and its subsets. The two 

subsets are mutations at positions absent from the training set (SRPM), and muta-

tions at positions found in the training set (MRPM). The ∆∆GRF ∩ CFCB column 

reports the total performance for the ∆∆GRF and CFCB results on the SRPM and 

MRPM subsets, respectively. The average and SD of the performance measures 

were obtained by a bootstrap procedure run for 1000 iterations performed on the 

cross-validation predictions. As can be seen, Pro-Maya outperforms the other 

methods. Moreover, the results for the MRPM set indicate that the incorporation of 

experimental data regarding mutations at the query position improved the predic-

tion accuracy.  

Table 1. Cross-validation results 
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datasets. However all methods show major decline in the perform-

ance. Note that although the ranges of Prethermut's and our results 

coincide according to the average and the standard deviation, for 

all subsets created during the bootstrapping process our PCC 

showed an average (minor) improvement of 0.02±0.1 over the PCC 

of Prethermut, the best of the other methods. 

Interestingly, each method achieved a lower RMSE for the PoP-

MuSiC-DB set than for the Potapov-DB set. This trend is also seen 

in the cross-validation results of the 1405 mutations shared by the 

two datasets (data not shown). Possible explanations are suggested 

in the Discussion below. 

Pro-Maya's performance was also evaluated on a validation set of 

mutations excluded from the PoPMuSiC-DB. This validation set 

has been previously used by Dehouck et al. to benchmark PoPMu-

SiC-2.0, Dmutant (Zhou and Zhou, 2002), Auto-MUTE (Masso 

and Vaisman, 2010), FoldX (Guerois, et al., 2002), CUPSAT 

(Parthiban, et al., 2006), Eris (Yin, et al., 2007) and I-Mutant-2.0 

(Capriotti, et al., 2005). Both the PCC and RMSE values indicate 

that Pro-Maya performs better than these aforementioned methods 

(Table 2, Table S5; supplementary material) for the entire valida-

tion set and for its SRPM and MRPM subsets. As can be seen in 

Table 2, Pro-Maya's PCC on the entire validation set reaches a 

value of 0.79, constituting an improvement of 0.07 and of 0.1 over 

the PCCs obtained by Prethermut and by PoPMuSiC-2.0, respec-

tively. 

To estimate how well Pro-Maya performs on query mutations at 

proteins that are not homologous to any of the proteins in the train-

ing set we compared the performance of the LOO-unseen with the 

performance of the LOO-all (table S4; supplementary material). 

Interestingly, although the performance of the ∆∆GRF of the LOO-

unseen declined both on the MRPM and SRPM subsets (PCC of 

0.76±0.01 and 0.60±0.02, respectively) the CFCB algorithm was 

able to compensate and maintain a similar PCC in both LOO pro-

cedures, achieving a PCC of 0.83±0.01.  

The results of the 5- and 10-fold and LOO-unseen cross-validation 

can be viewed online at the FAQ section of the Pro-Maya website. 

The FAQ section also contains a detailed description of Pro-

Maya's training set e.g. number of proteins, number of mutated 

positions per proteins, functionality (SCOP classification 

(Andreeva, et al., 2008)) and physical properties of the proteins.  

An analysis of Pro-Maya's LOO-unseen versus the SCOP classifi-

cation (Table S6; supplementary material) of the proteins shows 

that Pro-Maya performs similarly on the All α, All ß, α +ß and α/ß 

SCOP classes with a PCC ranging from 0.59 to 0.64 for the SRPM 

and 0.8-0.83 for the MRPM. The PoPMuSiC-DB includes low 

number of mutations from the Coiled-coil, Multi-domain and 

Small proteins SCOP classes. Thus we cannot estimate Pro-Maya 

performance on these classes, although there is no reason to be-

lieve that the performance over them will differ significantly from 

the rest. 

 

3.2 How do the number and type of mutations with 

known ∆∆G values in the query position affect the 

prediction accuracy? 

Figure 2 shows that Pro-Maya’s prediction accuracy increases 

significantly with the addition of a single or two known mutations 

at the query position, and that the accuracy does not improve fur-

ther with the addition of more than two records. 

Intuitively, we might expect that the prediction accuracy of the 

CFCB algorithm should be correlated with the level of similarity 

between the physicochemical properties of the query and recorded 

mutations. To examine this hypothesis, for each of the mutations 

predicted by the CFCB algorithm in the PoPMuSiC-DB, we meas-

ured the shortest physicochemical distance (using the Miyata ma-

trix (Miyata, et al., 1979)) from the query mutation amino acid to 

any of the recorded mutations. For example, given a query muta-

tion to isoleucine at residue 29 in the apomyoglobin protein (PDB 

id: 1bvc chain A), we measured the shortest Miyata distance from 

isoleucine to any of the mutations, e.g. alanine, valine and me-

thionine. Here, we set the shortest Miyata distance to 0.29, which 

is the Miyata distance between isoleucine and methionine. The 

correlation between the Miyata distances of all query mutations 

with the squared error ((predicted ∆∆G – observed ∆∆G)2) reached 

only a low PCC of 0.14. This unexpected low correlation suggests 

that the performance of the CFCB algorithm is not affected by the 

Figure 2. The PCC of Pro-Maya on the PoPMuSiC-DB vs. the number 

of known mutations at the query position using the LOO-all and LOO-

neglect. The number of mutations in each group is shown in parenthe-

ses. For example, the second data point of the black curve indicates 

the performance of Pro-Maya on 327 query mutations with two known 

records for each in the training set. The second data point of the grey 

curve indicates the performance of Pro-Maya on the same subset of 

mutation after one of the two known mutations was removed from the 

training set. The first data point of the grey curve was calculated using 

the ∆∆GRF. The difference between the grey and black curves indi-

cates the PCC improvement achieved by the addition of a single 

known mutation in the query position. The results suggest that the 

improvement in accuracy is facilitated by the incorporation of as few 

as 1-2 known ∆∆G values in the query position. 

The Pearson correlation coefficient (PCC) and root mean square error (RMSE) 

of Pro-Maya's(*), Prethermut's and PoPMuSiC-2.0's predictions schemes on the 

whole validations set, and the MRPM and SRPM subsets. As can be seen, Pro-

Maya performs better on the entire validation set and subsets.  

*Pro-Maya's final performance is the total performance for the Random Forests 

and collaborative filtering results on the SRPM and MRPM subsets, respec-

tively (CFCB∩∆∆GRF). 

 

Table 2. Performance over the validation set  
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identity of the mutations with known ∆∆G values at the query 

position. 

4 DISCUSSION  

We tested Pro-Maya extensively using cross-validation on two 

datasets and an additional validation dataset, and found that it out-

performed current methods for the prediction of mutation stability. 

Our results demonstrate that the availability of as few as one or 

two records in the query position improve the prediction accuracy 

of ∆∆G values of additional mutations in that position. This im-

provement is independent of the amino acid identity of these re-

cords and of the sequence identity of the query protein to the train-

ing set. Thus, a systematic alanine-scanning mutagenesis of all the 

amino acids in a protein could greatly increase Pro-Maya’s predic-

tion accuracy for any mutation in the protein. 

The performance of our Random Forests prediction scheme on the 

SRPM subset is slightly better than that of the other methods we 

investigated. We attribute the improvement to the use of an inho-

mogeneous feature set comprising PEP-, SEP- and evolution-based 

features, including predictions by the Prethermut (Tian, et al., 

2010) and PoPMuSiC-2.0 (Dehouck, et al., 2009) tools. Previous 

prediction methods, in contrast, have been based on features of a 

single type (e.g., only PEP).  

Pro-Maya’s RMSEs for mutations in the PoPMuSiC-DB set are 

consistently lower than those for the Potapov-DB set. This is pre-

sumably because of the different procedures used for compilation 

of each dataset. PoPMuSiC-DB's compilation procedure used a 

weighted average of the identical mutations occurring in different 

conditions to calculate the ∆∆G values that are most likely to occur 

at physiological conditions. Whereas, the Potapov-DB compilation 

procedure gives equal weight to the various conditions at which 

∆∆G values are measured. Our prediction scheme does not take 

into account the conditions at which the ∆∆G was measured. Thus, 

it assumes that all measurements were taken under the same condi-

tions. Therefore, the PoPMuSiC-DB mutation set, which is charac-

terized by more homogenous experimental conditions, is presuma-

bly more suitable for our prediction scheme, as indicated by the 

low RMSE value. To achieve more accurate predictions, we 

trained the Pro-Maya web server using the PoPMuSiC-DB set. 

Thus, the server is best suited for predicting mutations at physio-

logical conditions. 

Pro-Maya's improved accuracy is facilitated by the use of a base-

line estimator that utilizes known ∆∆G records to determine a posi-

tion specific baseline ∆∆G (bi) model. The underlying assumption 

of Pro-Maya is that the ∆∆G of a mutation is strongly dependent 

on properties that are inherent to the amino acid position in the 

protein (e.g. solvent accessibility, amino acid identity, interaction 

with the environment and secondary structure). Thus, on average 

all mutations at the same position are expected to have similar 

∆∆G values. Therefore the position baseline ∆∆G which presuma-

bly reflects the inherent properties of the position can roughly 

model the query mutation. To fully model a mutation Pro-Maya 

also uses a content based- and a MU specific ∆∆G baseline based 

models. These models describe the mutation outcome attributes 

(e.g. physicochemical properties) and predict the ∆∆G shift from 

the position baseline. Nevertheless, it is expected that mutations 

with an irregular ∆∆G that differs much from the position ∆∆G 

baseline would be harder to predict. 

By design, Pro-Maya is not very suitable as a classifier of whether 

a mutation would stabilize or destabilize the protein; a classifier 

should be trained to this end.  

CF algorithms have been developed mainly for online electronic 

commerce applications and are particularly useful for exploiting 

large datasets very rapidly. To the best of our knowledge, their use 

in biology is quite scarce (Erhan, et al., 2006). The success of the 

CFCB algorithm in this study and the capability of the neighbor-

hood- and latent-factor based models to identify biological proper-

ties (discussed in the supplementary material) suggest that the CF 

approach could be applied to additional problems in biology. Ex-

amples include the identification of deleterious mutations in single 

nucleotide polymorphism data, the detection of true protein–

protein interactions in noisy yeast-two-hybrid and mass-

spectrometry data, as well as the prediction of ligand and drug 

molecules that could bind target proteins. Our CFCB algorithm and 

its integration with the neighborhood- and latent factor-based mod-

els can be readily adapted to these problems. 
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