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Navigating Among Known Structures in Protein Space

Aya Narunsky, Nir Ben-Tal, and Rachel Kolodny

Abstract

Present-day protein space is the result of 3.7 billion years of evolution, constrained by the underlying
physicochemical qualities of the proteins. It is difficult to differentiate between evolutionary traces and
effects of physicochemical constraints. Nonetheless, as a rule of thumb, instances of structural reuse, or
focusing on structural similarity, are likely attributable to physicochemical constraints, whereas sequence
reuse, or focusing on sequence similarity, may be more indicative of evolutionary relationships. Both types
of relationships have been studied and can provide meaningful insights to protein biophysics and evolution,
which in turn can lead to better algorithms for protein search, annotation, and maybe even design.

In broad strokes, studies of protein space vary in the entities they represent, the similarity measure
comparing these entities, and the representation used. The entities can be, for example, protein chains,
domains, supra-domains, or smaller protein sub-parts denoted themes. The measures of similarity
between the entities can be based on sequence, structure, function, or any combination of these. The
representation can be global, encompassing the whole space, or local, focusing on a particular region
surrounding protein(s) of interest. Global representations include lists of grouped proteins, protein
networks, and maps. Networks are the abstraction that is derived most directly from the similarity
data: each node is the protein entity (e.g., a domain), and edges connect similar domains. Selecting
the entities, the similarity measure, and the abstraction are three intertwined decisions: the similarity
measures allow us to identify the entities, and the selection of entities influences what is a meaningful
similarity measure. Similarly, we seek entities that are related to each other in a way, for which a simple
representation describes their relationships succinctly and accurately. This chapter will cover studies that
rely on different entities, similarity measures, and a range of representations to better understand protein
structure space. Scholars may use publicly available navigators offering a global representation, and in
particular the hierarchical classifications SCOP, CATH, and ECOD, or a local representation, which
encompass structural alignment algorithms. Alternatively, scholars can configure their own navigator
using existing tools. To demonstrate this DIY (do it yourself) approach for navigating in protein space,
we investigate substrate-binding proteins. By presenting sequence similarities among this large and
diverse protein family as a network, we can infer that one member (pdb ID 4ntl; of yet unknown
function) may bind methionine and suggest a putative binding mechanism.
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1 Introduction

1.1 Protein Structure
Space

1.2 Navigation
Modes

1.3 The Potential
of Studying Protein
Structure Space

Protein structure space is an abstract model which we use when we
study large, representative, sets of protein structures and their
interrelationships. Inspecting these large datasets allows us to bet-
ter understand protein evolution and biophysics. While protein
space is not real, the entities that populate it are: for example,
these can be protein chains or domains; furthermore, their compar-
isons are meaningful. Thus, the first and essential step when study-
ing protein structure space is to decide on the set of entities and the
measure of similarity among them (coupled with a method to
compute it). We can then calculate all-against-all comparisons of
these entities to construct the initial dataset. Because the abstract
model is derived from these comparisons, it is essential that this
initial set is as accurate and comprehensive as possible. Navigating
in protein structure space is in many ways navigating within this
initial dataset, and we can do this either locally or globally.

Navigating “locally” or “globally” in protein structure space is a
metaphor, which describes how we study the dataset. By “local,”
we mean that we identify small sets of comparisons, which we deem
relevant. Given a query protein chain, or query protein domain, we
think of the comparisons of that protein and its near structural
neighbors (i.e., other proteins in the dataset that are similar to it)
as covering its local region in structure space. Navigating locally is
moving between (overlapping) local regions, akin to moving
between landmarks when using a navigation app. By “global,” we
mean that we derived a model which integrates information from
many (possibly all) comparisons and explore this model. Alterna-
tively, we can think of this model as a data structure that organizes
all entities based on the relationships between them. Navigating
globally means that we either explore the properties of this data
structure, akin to staring at a map, or move between proteins based
on their location in the data structure.

Studying protein structure space can help us better understand
protein evolution and biophysics. It may also have a practical
value: insights could be used in protein structure prediction, pro-
tein function prediction, and protein design. By way of motivation,
we list a few examples; there are many more (e.g., those listed in
[1,2].) Evolution scholars have navigated protein space looking for
clues in the remnants of evolutionary processes [ 3,4 ]. For example,
Choi et al. [5] derive the “multiple birth model” for proteins from
maps, Dokholyan et al. [ 6] offered support for all proteins evolving
from a few precursors, Alva et al. [7] studied the relationship
between convergent and divergent evolution, Farias-Rico et al.
traced the evolutionary relationships between ancient superfolds
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[8],and Nepomnyachiy et al. [9] highlighted the complex nature of
reuse patterns, which often overlap with each other. Studying pro-
tein structure space also revealed biophysical properties of proteins:
examples include the work of Skolnick et al. [10], Nepomnyachiy
et al. [11], and Mackenzie et al. [12]. Understanding the space of
all structures can help in protein structure prediction and in better
organizing the databases for structure search [13]. A global per-
spective also offered a hint to the relationship between protein
structure and function, showing that there is a localized region of
high function diversity [14]. Notice that one size does not fit all:
different insights were gained from representations of protein space
that varied in the sets of entities curated and in the way the entities
were compared to each other.

2 Materials and Methods

2.1 The Entities

2.2 Relating
the Entities

The entities are derived from the proteins of known structure in the
Protein Data Bank (PDB) [15] and can be parts of proteins of
different scales, depending on the question at hand. With minimal
processing, these can be protein complexes or protein chains. One
could also consider protein domains [16, 17] (or even supra-
domains [18]), or meaningful sub-domain entities: protein frag-
ments (e.g., [19, 20]), protein themes [9], protein interfaces [21],
protein-peptide complexes [22 ], repetitive secondary structure ele-
ments (e.g., Smotifs [23]), or tertiary structural motifs (TERMS)
[12]. Alternatively, the structures could possibly be predictions
[24], or homology models [25]. Typically, one would use datasets
that were curated by others (e.g., the domain sets in SCOP [26],
CATH [27], or ECOD [28]). It is important to consider if the
entities are mutually exclusive, or not. For example, domains are
mutually exclusive because when partitioning chains to domains,
each residue is associated with only a single domain; in contrast,
themes cover multiple (nested) segments in a protein chain.

Comparing proteins can be based on their sequences, structures, or
functions. The most straightforward measure is sequence similarity,
which suggests shared evolutionary ancestor(s) [29]. Sequence
alignment tools vary in sensitivity: less sensitive methods rely
directly on the protein sequences (e.g., BLAST). More sensitive
methods rely on an enriched version of the sequences: either
sequence profiles (e.g., PSI-BLAST) or HMMs (e.g., HHSearch
[30] or HHMER [31]); these are probabilistic models that include
not only the protein sequence but also sequences of its close homo-
logues [30, 31]. Using sensitive sequence aligners like HHSearch
or HHMER reveals more distant evolutionary relationships. To
avoid relating pairs of proteins that have diverged beyond what
we would consider similar, scholars add an additional restriction
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2.3 Addressing
Redundancy

that the structures of the aligned residues be similar [11, 32]; it is
not impossible that structural changes emerged upon evolution
though (and anyway, proteins often undergo conformational
changes [33, 34]). Note that using profile or HMM-based
sequence aligners requires calculating these profiles or HMMs;
one can use pre-calculated ones (which influences the set of entities
available). Alternatively, it is possible to compare the structures of
the proteins. Structure similarity is often viewed as a method for
relating proteins that were similar further back in evolutionary
history, with sequences that diverged beyond the point where one
can identify their common ancestry; for example, the SCOP “fold,”
CATH “Architecture,” and ECOD “X” levels are based on struc-
ture similarity. This is akin to using a more powerful telescope to
look back in time [35]. A concern when relying only on structure
similarity to study protein evolution is that these proteins share
structures because these structures are especially favorable from a
biophysical perspective. In other words, that what we see is merely a
consequence of the biophysical properties and constraints [36],
perhaps due to convergent evolution. To compare structures, we
use one of many structural alignment methods. In fact, structural
alignment is a vast field with many intricacies, far beyond the scope
of this chapter. For more details, see [37—40] and below in the
section highlighting structural alignment servers.

The similarity measure (be it based on sequence or on struc-
ture) can be local or global." In global similarity, the proteins are
considered in their entirety. In contrast, in local similarity, we
consider subsections, so that proteins can be identified as similar
even if there is only a partial match. The disadvantage of using a
global similarity measure is that to be meaningful, we must first
segment our proteins to pieces, which are similar in their entirety
(e.g., domains); this creates a chicken-and-egg situation, because
we want to segment the proteins in a way that we can find globally
meaningful similarities. The disadvantage of using a local similarity
measure is that it leads to non-transitive relationships: protein A
that is locally similar to protein B, protein B that is locally similar to
protein C, and at the same time proteins A and C have nothing in
common ([1] has an illustration of this). Non-transitive relation-
ships are counterintuitive when we think of the notion of similarity
and especially when we integrate all these relationships into a uni-
fied (global) model of protein space.

The PDB is redundant, and some proteins are far more abundant
than others (e.g., due to research interests of the scholars studying
these proteins) [41]. This suggests that when seeking a global

! Notice that the terms used here characterize the similarity measure, not the style of navigation in protein space,
to use the same terms as in the Needleman-Wunsch and Smith-Waterman sequence alignment algorithms.
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perspective, one should either rely on nonredundant datasets or
alternatively remove, or cull, the redundancy on their own.
Notice that we consider an entity redundant if the dataset includes
another copy of that entity: i.e., one that is (globally) similar to
it. Hence, both the definition of the entities and the measures of
similarity influence this redundancy removal process. There are
software packages, and servers, that implement algorithms for
removing redundancy: two popular ones are CD-HIT [42] and
PISCES [43].

For a global perspective, one must derive a data structure, or an
abstract model, from the dataset of all proteins and their compar-
isons. Scholars used three types of models: (1) networks, (2) classi-
fications, and (3) maps (for a review of these, see [2]). A network is
the data structure closest to the raw data. To construct it, one only
needs to list the meaningful similarities, and the network is a
straightforward representation of the entities (as nodes) and the
similarities (as edges connecting these nodes.) A classification
groups the entities into nonoverlapping sets of proteins. It is
assumed that proteins in the same set in the classification (i.e.,
with the same classification) are similar to each other, while those
not in the same set are not (or less so). The classifications are
hierarchical, and proteins are grouped with decreasing degrees of
similarity. Hence, to construct a classification, one needs to weight
the importance of the similarities identified among the protein
entities: emphasizing the ones that are within a set and downplay-
ing the ones between sets. Finally, in a map, each protein is repre-
sented by a point, and the points are positioned in two or three
dimensions, so that the distance between them approximates the
dissimilarity between the proteins they represent. The mapping is
calculated by first converting the measures of similarity between the
protein entities to an all-by-all dissimilarity matrix, followed by a
multidimensional scaling (MDS) to project this matrix to a lower
(two or three) dimension. Because the position of a protein is not
indicative of its relationship to other proteins in a straightforward
manner, maps were not used for local navigation. Rather, the
insights were derived from a global perspective [5, 14, 35, 44, 45].

Defining a meaningful nonredundant set of entities, calculating the
relationships between them, and collecting all this information to a
centralized data structure require both ingenuity and computa-
tional resources. Even more so, as the database of all protein
structures (the PDB) is constantly growing, the calculations need
to be routinely updated. Consequently, many groups have set up
web servers with data for navigating protein structure space; these
navigators have datasets which were curated, compared, and
organized—some at a single time point (but possibly with a more
elaborate organization)—while others are maintained up-to-date.
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2.6 Navigators
with a Global
Perspective

The navigators enable users to move in protein structure space as if
they are using a navigation app. Some of the navigators offer their
users a global perspective of protein structure space as well.

The most established resources for navigating protein structure
space are the hierarchical classifications; the popular ones are
SCOP from the Murzin lab, CATH from the Orengo lab, and
ECOD from the Grishin Lab; another popular classification—
Pfam [46]—is not discussed here because it is based on sequence
rather than structure. For a recent and extensive review of the
classifications, see [47]. The classifications organize the data in a
hierarchy: a user can gain a perspective of the whole space by
drilling down, starting at the top. For example, starting at the
highest level of SCOP, we see that structure space has regions of
all-alpha domains, all-beta domains, alpha+beta domains, and
alpha/beta domains, where the two latter classes include both
alpha and beta elements, separated or intertwined, respectively
[48]. Alternatively, one can search for a specific protein and con-
sider the classification of its domains and the list of all its related
proteins—ones whose domains are classified similarly (at different
levels of the hierarchy.) In short, the data structure that is used in
the hierarchies is a collection of sets (or lists), organized as a tree;
each entity is classified in several (nested) sets (depending on the
height of the hierarchy). The similarity measure used is based on
the sequences (at the lower levels of the hierarchy) and structures
(at the higher levels of the hierarchy). The entities classified are
domains: nonoverlapping subsections of the protein chains, which
cover all chain residues (or, in other words, each PDB chain is
segmented into one or more domains such that each residue is
part of exactly one domain). There is much discussion, and contro-
versy, on what is the correct definition of domains [49-511]; that
there are several domains databases (rather than one) is a clear
indication of this.

In practical terms, domains are the entities classified in SCOD,
CATH, ECOD, or in servers curating domains like CDD
[52]. More formally, there are several (not necessarily overlapping)
definitions of a domain [16, 17, 53]: (1) a structurally distinct
region (perhaps a compact unit) [54], (2) a segment that is identi-
fied as an evolutionary unit based on observations of reuse in
protein space, (3) an independently folding unit, and (4) a section
with assigned biochemical function. The domains in the hierarchi-
cal classifications are defined based on reuse. Unfortunately, these
domains, which are classified in the different databases, are not the
same ones (for comparisons, see [50, 51, 55, 56]); a recent study
estimates that only 60% of CATH domains have a similar SCOP
counterpart [53]. Nonetheless, the domains in the hierarchical
classifications have similar lengths of approximately 100 residues;
this is the average for the distributions of domain lengths in the
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SCOP, CATH, and ECOD (see Fig. 8b in [28]). Indeed, splitting a
protein chain into domains is challenging [49], leading to many
algorithmic methods devoted to this task (e.g., [54, 57-59]), and a
significant amount of human intervention in some of the classifica-
tions (rather than only relying on automatic domain assignment
procedures). Regardless of how automatic the procedure for iden-
tifying the domain boundaries, a fundamental problem remains if
the domains are defined based on reuse: the reuse patterns in
protein space are not simply reuse of segments of an appropriate
length (~100 residues). Rather, it is a complicated pattern of nested
segments that are reused to different extents [9, 27 ]. Consequently,
there is more than one way to reduce this complex pattern into
domain definitions. Due to this very same complexity, once the
domains are defined, there are many instances of common parts
(segments) between domains that are not wholly similar and are
thus classified differently (at different levels of the hierarchy)
[11, 29, 60-62].

The classification hierarchies maintain an up-to-date dataset
representing the complete and current PDB, with an intuitive
user interface. In CATH and ECOD, one can drill down the tree
to explore different members of the sets; CATH also has a sunburst
visualization, which indicates the relative sizes of the classified sets.
Since the last version (1.75 in 2009) of the classic SCOP, the
classification diverged into two variants: SCOPe and SCOP2.
SCOPe [63] is a continuously and (mostly) automatically updated
extension of classic SCOP. In contrast, SCOP2 [64] changed the
data structure: rather than the classic tree of sets, it uses a network;
the network representation (sometimes called graphs) is implemen-
ted with a web tool based on the visualization software Graphviz
[65]. In all classifications, the user can search for a specific protein
chain or domain and explore the local context of that protein within
the data structure (typically, within the hierarchy), allowing the user
to see proteins of similar sequence (with the same classification at
the lower levels) and of similar structure (with the same classifica-
tion at higher levels.)

Another way of navigating protein structure space is zooming into
a local region, while ignoring the global view, and exploring, by
moving between such local environments. Starting from the pro-
tein of interest, we think of its local environment as a list of its
structural neighbors (sorted from near to distant ones); we can
then move in space by selecting one of these neighbors to see its
slightly shifted local environment (centered on this neighbor.) We
think of this process as navigating in protein structure space, like a
driver following a navigation app without seeing the full landscape.
For this, all one must have is the list of neighbors for each protein in
the dataset. The entities considered are typically both PDB chains
and domains (either taken from the classifications or calculated with
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2.8 DIY: Build-Your-
Own Navigator

an automatic domain parser). Because the overall data structure is
not considered, the structural alignment remains the most impor-
tant computational component. Thus, such navigators were often
set up by groups developing structural alignment methods. What
transforms a structural alignment server into a useful navigator is
speed: to navigate comfortably, the server must be fast. This is
because when navigating, we search for structural neighbors repeat-
edly, each time starting at a different protein. Indeed, significant
sophistication is needed to build servers that are up-to-date, fast,
and comprehensive.

The differences between the structural alignment servers are
largely due to the differences between the structural alignment
methods. We list examples of structural alignment servers that
allow users to locally navigate in protein structure space. The
PDB website has precomputed structural alignments for a repre-
sentative nonredundant dataset, calculated using the FATCAT
aligner [66]. The European PDB website has PDBeFold [67], a
structural alignment server based on the SSM aligner [68]. NCBI’s
server is called VAST+ and is based on the aligner VAST
[69]. PhyreStorm [70] is a new server, which relies on TM-align
[71] and ofters a very comfortable navigation experience. Another
new server is TopSearch (using the structural aligner TopMatch),
which has the unique feature that it considers larger entities of
protein oligomer [72].

There are several reasons why scholars may want to customize their
own navigator to explore protein structure space, or parts of
it. First, the entities they wish to include may be specific to their
problem: a set of proteins that is not covered in the public servers
(perhaps a more redundant one), unpublished structures, or even
predicted ones. Also, one may want to study subsections of pro-
teins, which are different from chains or domains, for example,
shorter themes [9] or loops [73]. Second, scholars may want to
compare the entities themselves, as it gives them flexibility in the
choice of a specific sequence or structure alignment program, full
control over the parameters used, and the ability to enforce addi-
tional conditions when comparing proteins (e.g., a minimal align-
ment length). In some cases, even though there is a publicly
available structural alignment server, it is not fast enough for navi-
gating structure space; for these, one may prefer to pre-calculate all-
against-all comparisons (e.g., using the parallel power of a com-
puter cluster). We list just a few examples of comparison methods
that were used in a similar context: HHSearch [30], Matt [74], CE
[75], Mammoth [76], 3D-BLAST [77], FragBag [78], TM-align
[71], SSM [68], GRASP [79], and STRUCTAL [80]. Third, the
structural alignment servers do not offer a global perspective of
structure space, only a local one, and one may be interested in this
global perspective. Finally, scholars have different preferences when
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exploring structures in a molecular viewer, both in terms of the
viewer they are using and its configuration.

If the navigator is based on a network data structure, it is easy to
build your own navigator with the network visualization tool
Cytoscape [81] and its molecular viewer configuration apps
CyToStruct [82] or structureViz [83]. To represent a part of
protein space as a network, one needs to define the list of nodes
(entities to be compared and the edges that connect them (pairs of
entities that are similar). This is very easy to do with Cytoscape: a
(fantastic) open-source network analysis and visualization tool.
Given the list of nodes and edges, Cytoscape visualizes the infor-
mation as a well-laid two-dimensional network; one can configure
this visualization easily and extensively. For example, the color of
the nodes may depend on the structural class of the entities they
represent, and the thickness of the edges may depend on the
similarity of the entities they connect. This provides the global
perspective. To gain a local perspective, one would like to use a
molecular viewer to study the nodes or edges and the structures or
structural alignments they represent.

Molecular viewers need to be configured: these are sophisti-
cated software tools, with many alternative settings. By configuring
the molecular viewer, one can display and highlight the relevant
parts in the protein structure. Popular molecular viewers are
PyMOL [84], UCSF Chimera [85], JMol [86], VMD [87], and
recently NGL—a particularly fast web-based viewer [88]; for a
review of these and more, see [89]. There are two methods of
configuring molecular viewers: (1) manually, using the graphical
user interface (GUI) and (2) by running a script in the language
specific to that viewer. Configuring the viewer manually is easier for
a novice but far more tedious; configuring it via scripts requires
command of the scripting language but facilitates repeated visuali-
zations dramatically. To link the entities in Cytoscape with a molec-
ular viewer, one can install one of two Cytoscape apps: structureViz
or CyToStruct. structureViz is tightly coupled with UCSF Chi-
mera. In structureViz, node attributes can specify PDB names, so
that the corresponding pdb file opens in UCSF Chimera; the
molecular viewer can also be configured via its GUIL. In contrast,
CyToStruct is suited for users who configure the molecular viewers
via scripts; it is very powerful in that it allows using any molecular
viewer, and within that viewer configuring anything that can be
specified via a script, or equivalently, computed with that software.

CyToStruct can run any molecular viewer (and any external
program in general) from all nodes and edges (a menu opens when
right-clicking on it), with scripts that are tailored to each node or
edge. To configure CyToStruct, the user has to specify the external
program, a template of script to be run, and a file with node- or
edge-specific data for that template. CyToStruct then creates the
runnable script by infusing the node- or edge-specific data into the
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2.9 Case Study

template and runs the molecular viewer with a copy of this script.
The source code of CyToStruct is publicly available (https://
bitbucket.org/sergeyn/cytostruct/wiki/Home), along a series of
demos that users can rely on as a starting point. The demos include
visualization using the four popular molecular viewers (each with
their own syntax), configuring the visualization of complete struc-
tures, protein interfaces, structurally aligning multiple structures,
and selecting specific residues. CyToStruct can also be used within
the web-based version of Cytoscape (Cytoscape.js), to provide an
online visualization combining a network and a molecular viewer.

We present two examples for DIY navigators. The first is the
navigator that Nepomnyachiy et al. customized for a global view of
protein structure space [11]. The entities, or nodes in the network,
are 9710 SCOP domains (70% nonredundant set). These domains
were compared using the structural aligner SSM [68]; for suffi-
ciently meaningful alignments, Nepomnyachiy et al. calculated
measures of the similarity of the domains. Then, they define several
networks, each characterized by its edges, which connect all domain
pairs that were aligned with parameters better than some fixed
thresholds: a minimal alignment length (55, 75 residues), maximal
RMSD (2, 2.5, and 3 A), and minimal percent sequence similarity
(30, 40, and 50%). By coloring the nodes based on their SCOP
class, all-alpha, all-beta, alpha/beta, and alpha+beta, they could see
that protein structure space has a continuous region (the alpha/
beta domains) and discrete regions [11]. The Cytoscape networks
provide a global view, but navigating in specific regions of structure
space is also interesting. Nepomnyachiy et al. link and configure the
molecular viewer using CyToStruct [82] to see the domains and
the alignments and package and distribute the data and configura-
tion files (http://cs.haifa.ac.il /~trachel /domain_motif_networks/
), allowing anyone to study protein structure space in this way.

We present here a new example, where Cytoscape and CyToStruct
are used to navigate protein space for function inference. The
navigator helps because a careful examination of populated regions
in the protein universe can help decipher unknown qualities of
proteins found in these regions. Here, we demonstrate this using
substrate-binding proteins (SBPs) [90]. SBPs are involved in trans-
port of substrates into the cell, where their role is to recognize the
substrate and relay it to its transmembrane transporter. Although
they vary in size and share relatively low sequence similarity, they
share a similar, highly conserved, fold. In general, their shape is a
lung-like structure, formed of two structurally similar globular
domains, connected by a hinge. The hinge facilitates alteration
between substrate-free and substrate-bound conformations; sub-
strate binding to a cavity between the two domains brings them
closer to one another, into a bound, or “closed,” conformation.
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Fig. 1 Navigating protein structure space to study proteins with unknown function. Left panel. network of
substrate-binding proteins. Each node represents a single PDB chain; two nodes are connected by an edge if
they share some sequential and structural similarity. The nodes are colored according to the substrate; see
color-code at the bottom. White nodes represent proteins of unknown function. Middle panel: zooming-in on
the top-right cluster. This cluster is composed mostly of amino acid binding proteins. Right panel: zooming-in
on one connected component. Violet nodes represent methionine binding proteins. 4ntl, represented here by a
white node encircled in orange, has no bound substrate, and its function is unknown. It is connected to the two
central nodes, 4ghq and 3tqw (encircled in blue and purple). The figure was created using Cytoscape [94]

A dataset of binding proteins was collected from the 70% NR
PDB, by using the website text search. This dataset was extended by
adding proteins that share at least 30% of their sequence, over a
segment of at least 35 residues, with an RMSD lower than 3.5 A,
with the proteins in the initial dataset. Cytoscape generated the
network (Fig. 1, left panel), where each node represents a protein in
the dataset and two nodes are connected if the proteins are deemed
related (more than 30% sequence similarity, over more than 35 resi-
dues, with less than 3.5 A RMSD). With this particular choice,
several clusters are formed, so that in general SBPs which bind
similar substrates (as evident in their PDB structures) belong to
the same cluster (Fig. 1, left panel). Thus, their binding preferences
and modes of interaction with the substrate can be predicted by the
cluster they are found in. For example, one cluster is formed by
SBPs that bind amino acids (Fig. 1, middle panel). A connected
component within this cluster contains SBPs that generally bind
methionine (Fig. 1, right panel). The substrate of one of these SBPs
(white, encircled in orange, pdb 4ntl) is unknown. However, in this
case we can suggest a likely hypothesis is that it also binds methio-
nine. The sequence identity between the query and its neighbors is
less than 40%; thus this functional inference, which is in keeping
with the conjecture listed in CDD [52], is not trivial [91].

Using CyToStruct [82] and our molecular viewer of choice, we
can examine this hypothesis in detail. Reassuringly, comparison of
this query protein with its first neighbors in protein space (Fig. 1,
right panel, the two nodes at the center of the cluster, encircled in
cyan and green) supports this inference, as they share high struc-
tural similarity to the query (Fig. 2a). As both neighbors (pdb 4qhq
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Fig. 2 Methionine binding in the SBPs 4ntl, 4ghqg, and 3tqw. (A) Structural superposition of the 4ntl query
(orange) with 4ghq and 3tqw (blue and purple), respectively. The superposition is over the C-terminal lobe to
highlight the conformational change between the bound (close; 4ghq and 3tqw) and unbound (open; query)
states of the SBPs. The bound methionine is shown in red spheres. (B) The methionine binding site in 4ghg.
Methionine is presented using sticks model, and the polar residues of the binding site are depicted as
wireframes. The hydrogen bonds that mediate methionine’s interactions with these residues and with water
molecules (red sphere) are marked as red dashed lines. The highly conserved Arg143 is also marked. (C) The
methionine binding site in 3tqw. The highly conserved Arg113, equivalent of Arg143 in panel B, is marked. (D)
Putative encounter complex between methionine and the query. Arg144 (depicted as wireframe) has the same
location and rotameric state as its equivalents: Arg144 of 4ghq and Arg113 of 3tqw. The dashed line shows
the putative hydrogen bond, which could form between the arginine and the methionine carbonyl group. The
figure was created using the Pymol molecular viewer [84]

and pdb 3qwl) have a bound methionine in their PDB structure
(Fig. 2b, ¢), a superposition of the structures can even be used to
suggest a putative binding site (Fig. 2d). Evolutionary analysis,
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using ConSurf [92, 93], shows that the binding cavity is highly
conserved, providing further support for the inferred function and
binding mode. In particular, the three binding sites feature a highly
conserved arginine residue (conservation grade of 9 on a 1-9 scale).
Furthermore, in all three proteins, the arginine populates the exact
same rotameric state, which allows it to form a hydrogen bond with
the methionine substrate (Fig. 2b—d). In addition, water molecules
that participate in the binding are also found in all the structures.
However, not all the interactions that are found in the two bound
states have equivalents in the query, and the structural superposi-
tion indicates that it is in an open conformation (Fig. 2a). It
suggests that binding may follow the population shift theory,
where methionine is initially recognized by the conserved arginine
residue in the open conformation. This interaction may induce a
shift of the protein to its closed conformation, where additional
residues interact with methionine. Further investigation is needed
to examine this suggestion.

3 Conclusions and Outlook

How did proteins emerge in evolution, and how do they evolve?
Theoretically, a protein could emerge and evolve by linking one
amino acid after another. Scholars believe that this approach is
doomed, because the vast majority of polypeptide chains would
not even fold. Thus, we presume that proteins emerged by mixing
and matching short amino acid fragments (peptides) from the
primordial soup, evolving by recombination, decoration, and muta-
tion. Lupas et al. wrote an insightful review of this [29 ]. While most
protein scientists would agree with this suggested scenario, the
mechanics and details of the process which gave rise to proteins,
and that govern their evolution, is still yet to be understood.

This leads to two observations: (1) We can look for clues to
address these fundamental questions in current proteins by study-
ing the reuse patterns in all proteins of known structure. (2) We can
mine the evolutionary signal to identify common ancestry and
improve methods of protein similarity search, function annotation,
and design. For both of these, navigating in protein space can be

very useful.
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