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Abstract

Motivation: Accurate prediction of protein stability changes upon single-site variations (DDG) is

important for protein design, as well as for our understanding of the mechanisms of genetic dis-

eases. The performance of high-throughput computational methods to this end is evaluated mostly

based on the Pearson correlation coefficient between predicted and observed data, assuming that

the upper bound would be 1 (perfect correlation). However, the performance of these predictors

can be limited by the distribution and noise of the experimental data. Here we estimate, for the first

time, a theoretical upper-bound to the DDG prediction performances imposed by the intrinsic struc-

ture of currently available DDG data.

Results: Given a set of measured DDG protein variations, the theoretically “best predictor” is

estimated based on its similarity to another set of experimentally determined DDG values. We

investigate the correlation between pairs of measured DDG variations, where one is used as a predictor

for the other. We analytically derive an upper bound to the Pearson correlation as a function of the noise

and distribution of the DDG data. We also evaluate the available datasets to highlight the effect of the

noise in conjunction with DDG distribution. We conclude that the upper bound is a function of both uncer-

tainty and spread of the DDG values, and that with current data the best performance should be between

0.7 and 0.8, depending on the dataset used; higher Pearson correlations might be indicative of overtrain-

ing. It also follows that comparisons of predictors using different datasets are inherently misleading.

Contact: bental@tauex.tau.ac.il or piero.fariselli@unipd.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Prediction of protein stability changes upon mutation is a crucial step

in the understanding of protein function in health and disease, and

may facilitate protein design. Several computational methods have

been developed to predict the direction (stabilizing vs. destabilizing),

and the magnitude of the perturbation of the stability of a protein

introduced by a single-point mutation in its sequence (Capriotti

et al., 2005, 2008; Chen et al., 2013; Cheng et al., 2006; Fariselli

et al., 2015; Folkman et al., 2016; Giollo et al., 2014; Huang et al.,

2007; Laimer et al., 2016; Masso and Vaisman, 2008; Parthiban

et al., 2006; Pires et al., 2014a,b; Pucci et al., 2017; Savojardo et al.,

2016; Teng et al., 2010; Topham et al., 1997; Wainreb et al., 2011;
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Worth et al., 2011; Yin et al., 2007; Zhou and Zhou, 2002). Most of

these methods are based on machine learning, and, at state of the art,

their Pearson correlation performances range from 0.5–0.8.

The development of prediction methods has been made possible by

compilations of datasets of experimentally measured changes in protein

stability upon single-point variations [DDG ¼ DG_wildtype -

DG_mutant, the folding free energy difference between the wildtype

and mutant protein; (Broom et al., 2017; Dehouck et al., 2011;

Guerois et al., 2002; Kumar et al., 2006; Pires et al., 2014)]. Among

these, ProTherm (Kumar et al., 2006) is the most comprehensive data-

set, aiming at collecting from primary literature all the experimentally

determined thermodynamic values for calorimetry experiments in pro-

tein and protein mutants and making them available in a unified for-

mat. Therefore, data collected in ProTherm come from experiments

performed with different techniques and in different environmental

conditions. Each experimental condition is defined by several charac-

teristics, such as pH, temperature, additives in the solution, salt concen-

tration, ion concentration, protein concentration, the concentration of

the denaturant, addition of peptides to the protein sequence, etc.

Different environmental conditions, such as pH and tempera-

ture, yield different DDG values. In Keeler et al. (2009), the stability

change of variation H180A in the human prolactin (2Q98) was

measured at the same temperature (25�C) but in two different pH

conditions: pH¼5.8 and pH¼7.8. The corresponding DDG values

are 1.39 kcal/mol and �0.04 kcal/mol, respectively. Even when the

temperature and pH are the same, two measures of DDG can differ

due to other experimental conditions or different techniques. This is

the case for the E3R variation in protein 1CSP, for which six different

DDG values ranging from 1.4 kcal/mol to 2.4 kcal/mol were measured

(Gribenko and Makhatadze, 2007) at the same temperature (55�C)

and pH (7.5) but at six different salt concentrations ranging from 0 to

1.0 M NaCl. In Ferguson and Shaw (2002) the variant L3S of the

calcium-binding protein S100B (1UWO) measured in two different

conditions but at the same temperature (25�C) and pH (7.2) yielded

two DDG values of 1.91kcal/mol and �2.77kcal/mol. Here not only

the value of the DDG changes, but also the sign, i.e., whether the mu-

tation is stabilizing or destabilizing.

The broad range of experimental conditions in which DDG are

measured increases the actual uncertainty associated with them in

the databases. In other words, the error of a wet-lab experimental

determination of a DDG in a single experiment can be quite small,

roughly ranging from 0.1 to 0.5 kcal/mol [as an example it is

0.14 kcal/mol for thermal unfolding in Perl and Schmid (2001) and

as small as 0.06 and 0.09 kcal/mol in De Prat Gay et al. (1994).

Nonetheless, the experimental conditions in which the DDG meas-

ures are carried out can vary substantially, introducing other sources

of uncertainty associated with the measurements.

Given that all prediction methods exploit these data, an estimate

of the theoretical upper bound for the prediction is crucial for the

understanding and interpretation of the results. Here we approxi-

mate this upper bound by deriving an analytical expression, and by

analyzing the experimental data. We show that the best performance

depends on the dataset used, and would typically be significantly

lower than expected.

2 Theoretical estimation

2.1 Data uncertainty and representation of the data with

a probabilistic model
Given the broad range of values that the parameters of the experi-

mental conditions can assume, the uncertainty associated with each

DDG measurement for a set of single-point variations is greater than

the actual experimental error of 0.1–0.5 kcal/mol (because it

includes effects due to changes in experimental conditions). This un-

certainty, indicated here as r, can differ from one case to another.

A set of experiments performed on N different protein variations

produce N observed DDG values indicated here as {xi}. In the limit

of the uncertainty r approaching 0, the value of xi tends to the

“real” DDG value for each variation. Our hypothesis here is that

repeated observations xi for the same variation i are distributed

around the real i-th DDG value and have a standard deviation equal

to the (unknown) uncertainty ri. We do not pose restrictions on the

nature of the data distribution. We indicate with li the real DDG

value of a variation, determined in the wet-lab at arbitrary precision

(for which all the conditions are enumerated and measured).

A set of N experimentally observed DDG values {xig can be gen-

erated by choosing each xi with probability given by its specific dis-

tribution PiðxiÞ ¼ Piðxijli;riÞ with mean given by the i-th real DDG

value li and with standard deviation given by the unknown uncer-

tainty ri.

2.2 Theoretical correlation between two observed

distributions as a function of the variances
We consider a sufficiently large number of samples to estimate the

correlation between two sets of observations and hence establish a

general analytical expression for the correlation between them. This

is particularly useful if we want to use a set of observed DDG values

{xig as predictors for another set of observed DDG values {yig.
Because we assume that no computational method can predict better

than another set of experiments conducted in similar conditions, this

correlation represents an upper bound for the correlation that any

predictor that uses {xig as a training set can achieve. Our goal is to

estimate the correlation between a pair of sets of experimental

observations, {xig and {yig, of the same set of variations with real

DDG values equal to {li}. We assume that both {xig and {yig are

derived from the same set of distributions (PiðxiÞ ¼ Piðxijli;riÞ¼
PiðyiÞ ¼ Piðyijli; riÞ), where the distributions Pi can differ for each

protein variation i. In the following, we only assume that the means

and variances are finite, with common definitions

li ¼ yih i ¼ xih i ¼
ð1
�1

xiPi xið Þdxi

r2
i ¼ ðyi � liÞ2

D E
¼ ðxi � liÞ2
D E

¼
ð1
�1

ðxi � liÞ2Pi xið Þdxi

(1)

where the angular brackets represent expected values. With this no-

tation, the expectation of the Pearson correlation is defined as:

qh i ¼
rxy

rxry

� �
(2)

Considering a sufficiently large number of samples, we can set

rxffi ry, since they are computed in the same way from the same dis-

tributions. The Pearson denominator simplifies as rxry ffi rx
2 ffi ry

2

(which is the variance of one of the two variables). To work out an

analytical solution, instead of computing the expectation of the

Pearson directly, we compute the ratio of the expectations of the nu-

merator and denominators. In general, this is correct only to the first

order, however, when the number of samples is sufficiently large,

the Pearson correlation q is independent of the variance rx
2, so that

the covariance between them is zero (Cov q; r2
x

� �
ffi 0). We can see

this by generating an infinite set of different variance values by scal-

ing the original variables (x0i ¼ k � x0i and y0i ¼ k � yiÞ, while
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maintaining the same Pearson value q. Since it is possible to write

the covariance as a function of expectations (Heijmans, 1999) as

Cov q; r2
x

� �
¼ rxyh i � qh i r2

x

D E
(3)

from the independence of Pearson and variance (Cov q; r2
x

� �
ffi 0) it

follows that the expected value of the Pearson correlation can be

approximated as

qh i ffi rxyh i= r2
x

D E
(4)

The numerator in Equation (4) can be computed by taking the

expected values of the variables {xig and {yig, as:

rxyh i ¼
1

N

X
i

xi � xð Þ yi � yð Þ
* +

¼ 1

N

X
i

ð
xi � xð ÞPiðxiÞdxi

ð
yi � yð ÞPi yið Þdyi

(5)

where x and y are the mean values of variables {xig and {yig. The

first term in the arguments of the two integrals can be expanded by

adding and subtracting the same value, in this case we choose to add

and subtract the real value for the distributions: li. Hence, the argu-

ment of the first integral ðxi � xÞ can be expanded as

xi � lið Þ þ li � xð Þ. Similarly, in the second integral, ðyi � yÞ can be

expanded as yi � lið Þ þ li � yð Þ. The resulting formula becomes:

hrxyi ¼
1

N

X
i

�� ð
ðxi � liÞPiðxiÞdxi þ

ð
ðli � xÞPiðxiÞdxi

�
�

� ð
yi�lið ÞPi yið Þdyi þ

ð
ðli � yÞPiðyiÞdyi

�	 (6)

We notice that the first and third integrals go to zero (as N

increases), by definition of the mean, Equation (1), while the second

and fourth integrals, after taking out the terms that do not depend

on the integration variable, give 1 (for the normalization of the dis-

tribution Pi). So the numerator becomes:

1

N

X
i

ð
li � xð ÞPi xið Þdxi


 � ð
li � yð ÞPi yið Þdyi


 �

¼ 1

N

X
i

li � xð Þ li � yð Þ
(7)

Assuming that the two experimental sets are derived from the

same distribution, with an average of l (which would be the case un-

less there are systematic errors), x and y would equal l, and the nu-

merator in Equation (4) would tend to:

rDB
2 ¼ 1

N

X
i

li � lð Þ2 (8)

This is the variance of the distribution of the real DDG values,

which does not depend on the experimental uncertainty but only on

the distribution of the DDG values in our database (hence rDB). The

database distribution can be of any type, the only value we consider

is its variance rDB
2. So we can estimate the covariance as:

rxyh i ffi rDB
2 (9)

For the denominator of the Pearson correlation [Equation (4)]

we have:

rx
2 ¼ 1

N

X
i

ðxi � xÞ2 (10)

We can estimate the variance as before, thus for rx
2 we obtain:

r2
x

� 
¼ 1

N

X
i

xi � xð Þ2
* +

¼ 1

N

X
i

ð
xi � xð Þ2Pi xið Þdxi

¼ 1

N

X
i

ð
xi � lið Þ þ li � xð Þ

� �2Pi xið Þdxi

¼ 1

N

X
i

ð
xi � lið Þ2 þ li � xð Þ2 þ 2 xi � lið Þ li � xð Þ

h i
Pi xið Þdxi

(11)

When integrated, the last term of the integral goes to zero as N

increases [based on the definition of mean, Equation (1)], while the

first and the second approach the uncertainty ri
2 associated with

each DDG point, and rDB
2 of the real data set, respectively. Thus,

the variance can be estimated as:

rx
2

� 
ffi r2 þ rDB

2 (12)

Where we indicate with r2 the average variance of the data

r2 ¼ 1

N

X
i

ri
2 (13)

and with r its square toot (r ¼
ffiffiffiffiffiffi
r2

p
). With this, the Pearson correl-

ation [Equation (4)] can be estimated as:

qh i ffi
rxyh i
rx

2h i ffi
rDB

2

r2 þ rDB
2
¼ 1

1þ r2

r2
DB


 � (14)

Given that the two variances are greater than zero, the experi-

mental observations will always yield Pearson correlation smaller

than 1. The magnitude of the reduction of the correlation is imposed

by the squared ratio of the average uncertainty of each data point

(DDG value) and the spread of the set of data used for the predic-

tion. Equation (14) indicates that the smaller the dispersion of the

dataset rDB
2, the more sensitive the Pearson correlation is to the

data noise (or uncertainty, r). In other words, two datasets that

share the same average uncertainty but differ in their data distribu-

tion have different upper bound Pearson correlations.

Figure 1 shows a graphical plot of the correlation q as a function

of the average uncertainty r and the standard deviation rDB. Each

curve represents the upper bound that a Pearson correlation can

achieve. For example, with rDB of 2 kcal/mol and average uncer-

tainty r of 1 kcal/mol, the maximum Pearson correlation that any

predictor can achieve is only about 0.8.

3 Experimental datasets

To be more realistic, we supplement the approximate theoretical

derivation of Section 2 with estimates based on real mutation data

taken from the available databases.

3.1 Distribution of the available data
We considered three datasets used to train most of the available

computational methods. The first is the latest version of ProTherm

(Kumar et al., 2006, last update in 2013) comprising 3464 single-

point mutations from 135 proteins of known structure (with PDB

IDs). The second is S2648 (Dehouck et al., 2011) which comprises

2648 single-site variations in 131 proteins taken and cleaned from a

previous release of ProTherm. The third is VariBench, a manually

curated dataset, for which the DDG measurements have been
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checked in the primary literature. VariBench (Yang et al., 2018) is

derived from the ProTherm release of February 22, 2013 and con-

tains 1564 single-site variations from 99 proteins.

The three datasets have a very sharp distribution around the

average value (around �1.06 kcal/mol for each set), with low stand-

ard deviations (rDB) of 2.06 kcal/mol in ProTherm, 1.91 kcal/mol in

VariBench, and 1.47 kcal/mol in S2648 (Supplementary Fig. S1).

The theoretical model above [Equation (14)] shows that with such

low deviations, the Pearson correlation should be sensitive to noise.

It is also noteworthy that because of the difference in their stand-

ard deviations, the maximum possible Pearson correlation of the three

datasets, for the same average experimental uncertainty r, is not the

same. In particular, if both the VariBench and S2648 datasets are

affected by the same average experimental uncertainty r, the max-

imum possible Pearson correlation of VariBench would be larger.

3.2 What can we expect from the current experimental

datasets?
We made a raw evaluation of what we can expect from the current

experimental dataset. In particular, we considered two datasets:

1. S1: a subset of 574 ProTherm single-site variations for which

two or more experimental DDG values are reported for the same

protein variation, measured at the same temperature and pH;

2. S2: a subset of 551 variations shared by VariBench and S2648,

for which the manual curators ended up with different DDG

values.

Thus, for each variation i (in either S1 and S2), we can associate

a mean value (li ¼ DDGi ) and a standard deviation (ri), since we

have at least two DDG values. Computing r (as the square root of

the mean of fr2
i g) and the rDB (using the fDDGig) for S1 and S2, we

obtained r¼1.04 and rDB¼1.72, and r¼0.72 and rDB¼1.57, re-

spectively. Substituting these values in Equation (14), we obtain esti-

mations of maximum Pearson correlations of 0.73 for S1 and 0.83

for S2. However, the same data can be used to explicitly take into

account the different fr2
i g values. For each variation it is possible to

derive a set of pairs of “experiments” by randomly drawing two val-

ues at a time from the normal distribution NðDDGi ; riÞ. Figure 2

shows the results of a typical run. By drawing 100 pairs of such

“experiments”, and repeating the runs 10 times, we obtained an esti-

mation of the Pearson correlation (with variable frig) of

0.74 6 0.02 and 0.84 6 0.02, for S1 and S2 respectively.

4 Conclusion

Using a general model we approximated the correlation between a

pair of observed DDG measurements, where one is used to predict

the other. An approximate analytical expression, as well as simula-

tions using real data, show that the correlation is limited by the ratio

between these two uncertainties, placing a natural upper bound on

the maximum possible Pearson correlation between predicted and

empirical values. With current accuracy, the theoretical value critic-

ally depends on both the average uncertainty of the data (r) and the

spread of the dataset used (rDB). While the first can be reduced to

some extent by manually cleaning the data, rDB is an intrinsic prop-

erty of the dataset that provides an upper bound to the maximum

expected Pearson correlation.

A similar approach can be used to derive a lower bound for the

root mean square error (Rmse), another commonly used measure of

performance. In Supplementary Material we show that the expected

value of the root mean square error is a linear function of the aver-

age data uncertainty ( Rmseh i ffi
ffiffiffi
2
p

r). The current datasets (S2648,

VariBench) have a rDB< 2, dictating an upper bound of about 0.8 to

the Pearson correlation and lower bound of about 1 kcal/mol for the

root mean square error (see Supplementary Material); better values

would be indicative of overtraining.

Generally speaking, the conclusions should be valid whenever

large empirical datasets compiled of various measurements are used

for training a predictor, and Equation (14) gives an approximate

upper bound for the prediction accuracy.

Fig. 1. Expected Pearson correlation<q> vs. data average uncertainty (r) for

different values of dataset standard deviation rDB. The results were calculated

using the approximate analytical expression of Equation (14), with each curve

corresponding to a specific rDB. The ratio between r and rDB determines the

approximate upper bound of q, which, for finite values of these uncertainties,

will always be smaller than 1

Fig. 2. Scatterplot of two randomly generated observations for a given vari-

ation. Red points are 100 randomly generated observations according to a

normal distribution, with DDGi and ri taken from the manually curated S2:

different value for the same mutation reported in S2648 and VeriBench). Blue

points are 100 randomly generated observations according to a normal distri-

bution with DDGi and ri taken from S1: ProTherm variations with more than

one DDG value reported for the same variation at the same pH and

temperature

1516 L.Montanucci et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/9/1513/5134060 by Tel-Aviv U
niversity user on 02 February 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty880#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty880#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty880#supplementary-data


Funding

This work was supported by EBA-PRISM an Israel-Italy collaborative project,

the Israel Ministry of Science and Technology and Italian Ministry of Foreign

Affair and International Cooperation. NB-T’s research is supported in part by

the Abraham E. Kazan Chair in Structural Biology, Tel Aviv University.

Conflict of Interest: none declared.

References

Broom,A. et al. (2017) Computational tools help improve protein stability but

with a solubility tradeoff. J. Biol. Chem., 292, 14349–14361.

Capriotti,E. et al. (2005) I-Mutant2.0: predicting stability changes upon muta-

tion from the protein sequence or structure. Nucleic Acids Res., 33, 306–310.

Capriotti,E. et al. (2008) A three-state prediction of single point mutations on

protein stability changes. BMC Bioinformatics, 9, S6.

Chen,C.W. et al. (2013) iStable: off-the-shelf predictor integration for predict-

ing protein stability changes. BMC Bioinformatics, 14, S5.

Cheng,J. et al. (2006) Prediction of protein stability changes for single-site

mutations using support vector machines. Proteins, 62, 1125–1132.

De Prat Gay,G. et al. (1994) Contribution of a proline residue and a salt bridge

to the stability of a type I reverse turn in chymotrypsin inhibitor-2. Protein

Eng., 7, 103–108.

Dehouck,Y. et al. (2011) PoPMuSiC 2.1: a web server for the estimation of

protein stability changes upon mutation and sequence optimality. BMC

Bioinformatics, 12, 151.

Fariselli,P. et al. (2015) INPS: predicting the impact of non-synonymous varia-

tions on protein stability from sequence. Bioinformatics, 31, 2816–2821.

Ferguson,P.L., and Shaw,G.S. (2002) Role of the N-terminal helix I for dimer-

ization and stability of the calcium-binding protein S100B. Biochemistry,

41, 3637–3646.

Folkman,L. et al. (2016) EASE-MM: sequence-based prediction of

mutation-induced stability changes with feature-based multiple models.

J. Mol. Biol., 428, 1394–1405.

Giollo,M. et al. (2014) NeEMO: a method using residue interaction networks to

improve prediction of protein stability upon mutation. BMC Genomics, 15, S7.

Gribenko,A.V. and Makhatadze,G.I. (2007) Role of the charge-charge inter-

actions in defining stability and halophilicity of the CspB proteins. J. Mol.

Biol., 366, 842–856.

Guerois,R. et al. (2002) Predicting changes in the stability of proteins and pro-

tein complexes: a study of more than 1000 mutations. J. Mol. Biol., 320,

369–387.

Heijmans,R. (1999) When does the expectation of a ratio equal the ratio of

expectations? Stat. Papers, 40, 107–115.

Huang,L.T. et al. (2007) iPTREE-STAB: interpretable decision tree basedme-

thod for predicting protein stability changes upon mutations.

Bioinformatics, 23, 1292–1293.

Keeler,C. et al. (2009) Contribution of individual histidines to the global sta-

bility of human prolactin. Protein Sci., 18, 909–920.

Kumar,M.D. et al. (2006) ProTherm and ProNIT: thermodynamic databases

for proteins and protein-nucleic acid interactions. Nucleic Acids Res.

(Database Issue), 34, D204–D206.

Laimer,J. et al. (2016) MAESTROweb: a web server for structure-based pro-

tein stability prediction. Bioinformatics, 32, 1414–1416.

Masso,M. and Vaisman,I. (2008) Accurate prediction of stability changes in

protein mutants by combining machine learning with structure based com-

putational mutagenesis. Bioinformatics, 24, 2002–2009.

Parthiban,V. et al. (2006) CUPSAT: prediction of protein stability upon point

mutations. Nucleic Acids Res., 34, 239–242.

Perl,D. and Schmid,F.X. (2001) Electrostatic stabilization of a thermophilic

cold shock protein. J. Mol. Biol., 313, 343–357.

Pires,D.E. et al. (2014) mCSM: predicting the effects of mutations in proteins

using graph-based signatures. Bioinformatics, 30, 335–342.

Pires,D.E. et al. (2014b) DUET: a server for predicting effects of mutations on

protein stability using an integrated computational approach. Nucleic Acids

Res., 42, 314–319.

Pucci,F. et al. (2017) SCooP: an accurate and fast predictor of protein stability

curves as a function of temperature. Bioinformatics, 33, 3415–3422.

Savojardo,C. et al. (2016) INPS-MD: a web server to predict stability of pro-

tein variants from sequence and structure. Bioinformatics, 32,

2542–2544.

Teng,S. et al. (2010) Sequence feature-based prediction of protein stability

changes upon amino acid substitutions. BMC Genomics, 11, S5.

Topham,C.M. et al. (1997) Prediction of the stability of protein mutants based

on structural environment-dependent amino acid substitution and propen-

sity tables. Protein Eng., 10, 7–21.

Wainreb,G. et al. (2011) Protein stability: a single recorded mutation aids in

predicting the effects of other mutations in the same amino acid site.

Bioinformatics, 27, 3286–3292.

Worth,C.L. et al. (2011) SDM–a server for predicting effects of mutations on

protein stability and malfunction. Nucleic Acids Res., 39, 215–222.

Yang,Y. et al. (2018) PON-tstab: protein variant stability predictor. import-

ance of training data quality. Int. J. Mol. Sci., 19, 1009.

Yin,S. et al. (2007) Eris: an automated estimator of protein stability. Nat.

Methods, 4, 466–467.

Zhou,H. and Zhou,Y. (2002) Distance-scaled, finite ideal-gas reference state

improves structure-derived potentials of mean force for structure selection

and stability prediction. Protein Sci., 11, 2714–2726.

On the upper bound 1517

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/9/1513/5134060 by Tel-Aviv U
niversity user on 02 February 2020


