
Generation, Comparison, and Merging of Pathways between Protein
Conformations: Gating in K-Channels

Angela Enosh,*y Barak Raveh,*z Ora Furman-Schueler,z Dan Halperin,* and Nir Ben-Taly

*School of Computer Science and yDepartment of Biochemistry, Tel Aviv University, Ramat Aviv 69978, Israel; and zDepartment
of Molecular Genetics and Biotechnology, Hadassah Medical School, Hebrew University, Jerusalem, Israel

ABSTRACT We present a general framework for the generation, alignment, comparison, and hybridization of motion pathways
between two known protein conformations. The framework, which is rooted in probabilistic motion-planning techniques in robotics,
allows for the efficient generation of collision-free motion pathways, while considering a wide range of degrees of freedom involved
in the motion. Within the framework, we provide the means to hybridize pathways, thus producing, the motion pathway of the lowest
energy barrier out of the many pathways proposed by our algorithm. This method for comparing and hybridizing pathways is
modular, and may be used within the context of molecular dynamics and Monte Carlo simulations. The framework was
implemented within the Rosetta software suite, where the protein is represented in atomic detail. The K-channels switch between
open and closed conformations, and we used the overall framework to investigate this transition. Our analysis suggests that
channel-opening may follow a three-phase pathway. First, the channel unlocks itself from the closed state; second, it opens; and
third, it locks itself in the open conformation. A movie that depicts the proposed pathway is available in the Supplementary Material
(Movie S1) and at http://www.cs.tau.ac.il/;angela/SuppKcsA.html.

INTRODUCTION

K-channels are found, in essence, in all kingdoms of life and

all types of cells (1). They are best known for their function in

excitable cells. For example, they are involved in the gener-

ation and propagation of nerve impulses in the synapse and

neuron (1). Mutations in the proteins that form the channel

may lead to diseases such as multiple sclerosis, cystic fibrosis,

and cardiac arrhythmia (2). Because of their involvement in

these and other channelopathies, i.e., channel-related dis-

eases, they are major drug targets. The K-channels are diverse

in their sequences and mechanisms of gating, i.e., the pro-

cesses by which their pores open and close. However, they all

share a similar pore structure and very similar ion perme-

ability characteristics. Here, we focused on the pore domain.

The structure of this domain was revealed by x-ray crystal-

lography studies of the bacterial K-channel of Streptomyces
lividans (KcsA) (3,4). Subsequently, several more K-channel

structures of various sources have emerged (5–9), and we

know the structure of some K-channels in their open

conformation, and others in their closed conformation. For

example, the voltage-dependent K-channels from Aeropyrum
pernix (KvAP) (10) and Methanobacterium thermoauto-
trophicum (MthK) (11) are considered to be in open confor-

mations, whereas KcsA is known in a closed conformation.

We present a novel framework for exploring conformational

changes in proteins, and use it to suggest a pathway between a

closed state of the KcsA channel (4) and a model structure of

the open state of the channel.

The pore-forming region in the K-channel is composed of

four identical monomers that oligomerize around the channel

pore (Figs. 1 and 2 a). Each monomer contributes a pair of

transmembrane helices, TM1 (Fig. 1, blue) and TM2 (Fig. 1,

green), that are connected by a reentrant loop. This loop,

located at the extracellular end of the channel, contains the

selectivity filter (Fig. 1, yellow), which is tuned, for example,

to select potassium over sodium ions. The pore gate is found

at the intracellular region of TM2 helices (Fig. 1).

There is much evidence that the KcsA channel switches

between open and closed conformations (12–17). The com-

putational effort to provide molecular models of confor-

mational changes includes coarse-grained normal-modes

analysis (18). In one particularly interesting study, using the

Gaussian-network method, Shrivastava and Bahar (19) sug-

gested that channel-opening follows the corkscrew motion of

intracellular regions of the channel. This suggestion recently

gained strong experimental support from innovative single-

molecule studies (20). The experimental results were in-

terpreted to indicate a corkscrew motion of the intracellular

ends of TM2 helices, and provided the first direct insights

into the large-scale nature of the motion. However, experi-

mental methods are still unable to give a detailed atomic

account of the motion, which is of great interest in mutational

analysis and the drug targeting of transition states.

The transition between the open and closed conformations

involves major conformational changes and occurs within

microseconds or more (21). The large amplitude of the motion,

both in time and space, is beyond the reach of standard mo-

lecular-dynamics simulations, and external biasing was used to

trace it. For example, Biggin and Sansom used steered molec-

ular dynamics and simulated channel-opening by slowly in-

flating a sphere which was placed at the center of the (closed)
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gate (21). Tikhonov and Zhorov used a similar approach, by

applying full-atom Monte Carlo simulations while iteratively

inflating and deflating a cylinder at the pore axis (22).

In this study, we developed a very different framework to

explore many putative conformational trajectories rapidly,

align them using a novel dynamic-programming approach,

and cluster them into representative motion pathways. Within

this general framework, we found plausible low-energy tra-

jectories of channel-opening, with and without a biasing

constraint.

The basic motion-planning problem can be stated as fol-

lows. Given a robot moving in an environment cluttered with

obstacles, and given start and goal configurations for the

robot, find a collision-free path connecting these two con-

figurations (‘‘configuration’’ is the common robotics term for

‘‘conformation’’). The motion-planning problem is funda-

mental, and was originally studied in robotics and compu-

tational geometry, but has implications in numerous other

fields (23–25). A class of randomized-path planning meth-

ods, known as probabilistic roadmap (PRM) methods, was

successfully applied to complicated high-dimensional prob-

lems (26–28).

A variant of probabilistic techniques focuses on single-

query strategies, where the goal is typically to find a collision-

free path between the two query configurations by exploring

as little space as possible. Single-query strategies often build a

new roadmap for each query by growing trees of sampled

milestones rooted at the start and goal configurations (27).

Rapidly exploring random trees (RRTs) were recognized as

useful tools for designing efficient single-query paths in

highly constrained spaces (29,30). We used RRTs here to

predict plausible motion pathways of the KcsA channel.

FIGURE 1 KcsA channel. Two opposing monomers of the tetrameric

channel are shown. Each monomer contains two TM helices (TM1, blue;

TM2, green). The TM helices are connected to each other by the turret loop

(gray), pore helix (red), and selectivity filter (yellow). Two K1 ions within

the selectivity filter are shown as purple spheres. Locations of intracellular

and extracellular regions are indicated.

FIGURE 2 Scheme of the overall al-

gorithm: finding a motion pathway with

a minimal energy barrier between open

and closed conformations. (a) Two RRT

conformation trees were grown simulta-

neously, starting from the initial (solid)

and goal (open) conformations, until

trees could be connected to create a

full-motion pathway. The goal confor-

mation (right) was based on the known

x-ray structure of KvAP (10). (b) Gen-

eral outline of the methodology.
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Probabilistic motion-planning techniques were applied in

the context of molecular biology (31–34). For example,

Cortes et al. (35) developed an algorithm to compute large-

amplitude motions in flexible molecular models, using RRTs

to compute protein loop conformational changes and ligand

trajectories. Later, the same group integrated normal-modes

analysis with path-planning techniques for the study of large

conformational changes in proteins (36). Previously, we ap-

plied RRTs to predict stable conformations and motions in

pairs of transmembrane helices (37).

Here we employ RRTs in a more demanding application,

involving a full-fledged protein. We deal with a significantly

larger number of degrees of freedom (dofs) and search in a

much higher dimensional space. To handle the vast dimen-

sionality, we build the open conformation of the KcsA

channel by homology modeling, using the open conforma-

tion of KvAP as a template (Fig. 2 a, right). We then used the

RRT technique to generate many collision-free pathways that

connect the known structure of KcsA in its closed state (Fig. 2 a,

left) to this (putative) conformation. Specifically, two confor-

mation trees, rooted at each of the two KcsA states, were grown

simultaneously, with the aim of merging these trees. The

trees were grown using energetic considerations. Thus, each

path in the merged tree, between the nodes that are the roots

of the original trees, corresponds to a feasible motion path-

way of KcsA.

The RRT method resembles Monte Carlo simulations, in

that both generate conformations at random. However, RRT

‘‘looks back’’ at all previous conformations when generating

new ones. Thus, it is biased toward unexplored regions of

conformational space. In addition, RRT may yield more than

one trajectory in each run. Overall, sampling using RRT

usually provides a more complete picture of a conformational

space. It is particularly suitable to searching in constrained

environments, such as the torsion-angle space of a large

protein, where motion is highly restricted because of ample

steric clashes.

Our major innovation here involves the introduction of an

efficient technique to cluster and hybridize multiple path-

ways between the initial and goal conformations. We are not

aware of any similar feature within the context of path-

planning. To this end, we developed a means to compare and

align pairs of pathways, using dynamic programming. In this

respect, the alignment of pathways is analogous to the

alignment of sequences in BLAST (http://www.ncbi.nlm.

nih.gov/blast/Blast.cgi). The fitting of paths is used here to

cluster similar pathways meaningfully. The path-aligning

technique is also used to hybridize paths as a means of en-

hancing the performance of the RRT search, to help find

pathways that are short and energetically favorable.

The path-fitting algorithm that we propose is reminiscent

of curve-fitting techniques previously used to match curves in

two and three dimensions (38). The latter are close to the

dynamic-programming solution to the longest common

subsequence problem (39). Unlike the techniques used in

these other problems, our path-alignment algorithm works in

a very high-dimensional space, and requires various technical

adaptations.

THEORY

Pathways clustering

Because of the random nature of the RRT algorithm, different

runs produce different pathways. The pathways may partially

overlap with each other, and it is challenging to analyze them

in search of the shortest, energetically favorable, pathway

between the initial and goal conformations among them.

A first step toward this goal involves the clustering of path-

ways. We present a general-purpose approach to this end.

Pathways are clustered based on their similarity, which is

defined according to the distance between conformations

along pathways and their sequence of appearance within a

pathway. A dynamic programming algorithm is developed to

that end. Pathways within each cluster are automatically

hybridized to produce a unique, short, and representative

pathway. The pathways are ranked using an energetic crite-

rion, and the energetically most favorable ones are selected.

A dynamic-programming algorithm for
measuring similarity between pathways

We use a variant of dynamic programming to find the best

alignment between two pathways (Fig. 3 a). A pathway is

defined as an ordered sequence of conformations, and its

length is the number of conformations that it contains. For two

pathways, P and Q, of lengths m and n, respectively, we define

M as an m 3 n root mean-square deviation (rmsd) matrix,

where the rmsd between the conformation at position i along

pathway P and the conformation at position j along pathway Q
is stored in entry Mi,j. The Mi,j values are normalized to be

within the interval (0,1), and the normalized matrix is denoted

by M9i,j, where M9i,j ¼ 0 corresponds to the rmsd of zero be-

tween the corresponding conformations, and M9i,j ¼ 1 corre-

sponds to conformations that have the lowest resemblance, i.e.,

their rmsd is above a similarity threshold (here, 1.5 Å).

Let p1, p2, . . . , pm and q1, q2, . . . , qn denote the confor-

mations along pathways P and Q, respectively. We regard

each pathway as a word, with the constituting conformations

as letters, and we allow zero or more spacing between letters

in each word (Fig. 3 a). A valid fitting between pathways P
and Q is obtained by aligning the two respective words one

on top of the other, so that in each column, at least one letter is

not a space (depicted below as a dash). Here are examples of

valid fittings of

P ¼ fp1; p2; p3g and Q ¼ fq1; q2; q3; q4g :
p1 p2 p3 - ; p1- p2 - p3 - -

q1 q2 q3 q4 � q1 - q2 - q3 q4:
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We next describe all possible valid fittings between two

pathways P and Q, as above (Fig. 4). Let G ¼ (V,E) be a

directed graph, whose vertex set V consists of vertices vi,j (for

i ¼ 0 . . . m, j ¼ 0 . . . n) arranged in a grid, and that has three

outward directed edges from each vertex vi,j (i¼ 0 . . . m� 1,

j ¼ 0 . . . n � 1): 1), toward vi,j11, 2), toward vi11,j, and 3),

toward vi11, j11. The vertices vm,j (j ¼ 0 . . . n � 1) have

one outward directed edge toward vm,j11, and the vertices

vi,n (i¼ 0 . . . m � 1) have one outward directed edge toward

vi11,n. Each directed path from v0,0 to vm,n describes a

valid fitting of P and Q in the following manner: a vertical

edge (vi,j, vi11,j) corresponds to aligning the conformation

pi with a gap, a horizontal edge (vi,j, vi,j11) correspond to

aligning the conformation qj with a gap, and the diagonal

edge (vi,j, vi11,j11) corresponds to aligning the conformation

pi with qj. It is possible to see that every valid fitting of the

pathways P and Q corresponds to a directed path from v0,0 to

vm,n in G, and vice versa (Fig. 4). We will use fittings and

directed paths in G interchangeably.

We now assign a cost to a fitting by assigning weights to

edges along the directed path in the graph. Horizontal and

vertical edges are assigned equal weights, which we denote by

GapPenalty. (In our experiments, GapPenalty¼ 1, for reasons

to be clarified shortly.) A diagonal edge (vi,j, vi11,j11) is as-

signed the cost of the normalized rmsd M9i,j, as defined above.

The normalized rmsd M9i,j measures the similarity between the

conformations pi and qj that have been aligned, and is a real

value between 0 (identity) and 1 (greatest dissimilarity). In our

experiments, we chose to penalize gaps with the same score as

that of greatest dissimilarity, although other choices can be

incorporated.

Rephrased in terms of G, our best pathway-fitting problem

is to find the path of minimum weight between v0,0 and vm,n in

the directed graph. Let Pi denote the pathway consisting of

the first i conformations of pathway P. We similarly define

Qi. Our optimal pathway-fitting problem has the following

optimal substructure property. The optimal fitting is either 1),

the optimal fitting of Pm�1 and Qn�1 concatenated with the

fitting of pm and qn, 2), the optimal fitting of Pm and Qn�1

concatenated with the fitting of a gap and qn, or 3), the op-

timal fitting of Pm�1 and Qn concatenated with the fitting of

pm and a gap. The same arguments apply to any pair of

subpathways Pi and Qi for i . 0, j . 0. This leads to the

following dynamic programming formulation: DP is an (m 1

1) 3 (n 1 1) matrix, whose element DP[i,j] stores the score

of the optimal fitting of the subpathways between Pi and Qj.

Therefore, our goal is to compute DP[m,n], and deduce the

optimal fitting.

The optimal fitting can be deduced easily from the table

DP without extra storage, by tracing back the optimal solu-

tion from the last alignment backward. The matrix DP can be

computed in O(mn) time, using O(mn) space (or less space,

using standard techniques (39)).

Clustering

After defining a similarity score between pathways, one can

cluster the pathways using hierarchical clustering (40). Given

n objects, hierarchical clustering assigns each object to a

cluster. It then applies a series of fusion steps to the n clusters

until all the objects are clustered into a single cluster of size n.

In each fusion step, the two most similar clusters are merged.

There are several methods to define distance (i.e., dissimi-

larity) between clusters. Here we use the complete linkage

clustering method. Distances between clusters of pathways

are computed by the farthest-neighbor method. In other

words, the distance between two clusters Ck and Cs is defined

as d(Ck,Cs)¼maxfPD[i,j] j pathway i is in Ck, pathway j is in

FIGURE 3 Alignment between two pathways. Conformations along op-

timal pathway (i.e., pathway with the lowest energy barrier) are in cyan, and

other conformations are in purple. (a) To align two pathways, we regard

each pathway as a word with the constituting conformations as letters, which

makes the problem analogous to that of the alignment of similar protein

sequences. Thus, we can use dynamic programming for the aligning of two

words, to align two pathways where two conformations from different

pathways are matched, based on their rmsd. Zero or more gaps between

conformations are allowed, to maximize the global alignment between two

pathways. (b) In this example, the alignment can be used to shorten the

optimal pathway (upper pathway) by removing the conformation that is

aligned to a gap in the lower pathway. (c) The alignment can be used to

hybridize pathways, to obtain an energetically favorable pathway by replac-

ing subpathways. The first and last conformations along the two pathways

are aligned with each other, and the other conformations are aligned with

gaps. In other words, the two subpathways that are encircled by the ellip-

soids cannot be matched. If the energy barrier of the purple subpathway is

lower than that of the cyan subpathway, we may exchange between the two

subpathways and obtain a better energy barrier for the optimal pathway.
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Csg. Given n pathways, PD (distance pathway) is an n 3 n
table, where PD[i,j] is the distance between pathways i and j,
as defined by the dynamic-programming algorithm; clearly,

PD[i,i] ¼ 0 and PD[i,j] ¼ PD[j,i].
In each fusion step of the hierarchical clustering procedure,

the clusters Ck and Cs of minimal d(Ck,Cs) are merged.

Clustering proceeds until the clusters are dissimilar from each

other, based on a predefined criterion. Suppose that the

clustering method attempts to merge clusters Ck and Cs. If

two pathways exist, i.e., P of length m in Cs, and Q of length n
in Cs, such that the number of matching conformations along

them is below N 3 min(m,n), the hierarchical-clustering al-

gorithm stops. A value of N ¼ 0.7 is used here. In other

words, each pair of pathways in the same cluster contains

overlapping conformations (within an rmsd of 1.5 Å) of at

least 70% of the shortest pathway. A preliminary examina-

tion showed that similar pathways are obtained using slightly

different cutoff values.

Hybridization of pathways within a cluster, and
selection of the best pathway

After the clustering step, the pathways are ranked, and a

representative prominent pathway for each cluster is con-

structed. Intuitively, the representative pathway can be se-

lected based on a min-max criterion, i.e., the pathway whose

conformation of maximal energy is assigned the lowest value

among all pathways. However, it may be possible to construct

a better pathway by merging energetically preferable sub-

pathways. To this end, we exploited the alignment that was

produced by the dynamic programming step above.

A pathway-merger was built, in the search for a short

pathway that comprises low-energy conformations (Fig. 3).

There are two cases in the alignment between two pathways

that can help in the production of a better representative

pathway:

1. An alignment of gaps in one pathway to a sequence of

conformations on the other pathway (Fig. 3 b). For

example, the following alignment was computed for

pathways P and Q:

p1p2p3p4p5p6p7 - p8p9

q1q2q3 - - - q4q5q6q7

It is possible to shorten these pathways and obtain the

following pathways: pq ¼ fp1, p2, p3, p7, p8, p9g, and

qp ¼ fq1, q2, q3, q4, q6, q7g. These pathways are feasible,

provided that the local planner successfully connects p3 to p7,

and q4 to q6. If so, these pathways are preferable because

they are shorter and are associated with energy that is equal

to, or lower than, the energy of the original pathways. The

merger computes the maximum energy potential of the

conformations in these two short alternative-pathways, and

FIGURE 4 Alignment graph for two pathways P ¼ fp1,

p2, p3g and Q ¼ fq1, q2, q3, q4g. Two examples of align-

ments, as described in the text, are indicated by solid and

dashed arrows. Each path in the graph suggests a pairwise

alignment between two pathways.

TABLE 1

for i ¼ 0. . .m DP [i, 0] ¼ i 3 GapPenalty

for j ¼ 0. . .n DP [0, j] ¼ j 3 GapPenalty

for i ¼ 1. . .m

for j ¼ 1. . .n

if (M i,j, # SimilarityThreshold)

DP [i, j] ¼ min (DP [i – 1, j – 1] 1 M9i,j,

DP [i – 1, j] 1GapPenalty,

DP [i,j – 1] 1GapPenalty)

else

DP [i, j] ¼ min (DP [i – 1, j] 1GapPenalty,

DP [i, j – 1] 1GapPenalty)

return DP [m, n]
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selects the one with the lowest value. Based on the alignment,

it is also possible to choose the best conformation at each

step. For example, if energy (p1) , energy (q1), and energy

(q2) , energy (p2), we assign p1 to the first conformation in

the representative pathway and q2 to the second, provided

that the local planner finds a transition between these

conformations.

2. Two consecutive gaps, one in each pathway (Fig. 3 c).

For example, let us examine the following alignment:

p1p2p3p4p5p6 - - p7p8

q1q2q3 - - - q4q5q6q7

The following hybridized pathways may be produced: pq¼
fp1, p2, p3, q4, q5, p7, p8g, and qp¼ fq1, q2, q3, p4, p5, p6, q6,

q7g. In other words, the two consecutive gaps, one on each

pathway, suggest the possibility of choosing a subpathway

within the representative pathway. Again, the merger selects

the subpathway (among fp4, p5, p6g and fq4, q5g) that

minimizes the maximal energy of its conformations.

In summary, it is possible to use the gaps in the best-fitting

procedure according to the dynamic-programming approach,

to detect short and energetically favorable pathways. In

practice, a representative pathway was selected, iteratively

aligned, and hybridized with all the other pathways, as de-

scribed above.

METHODS

A scheme describing the overall approach is presented in Fig. 2. The different

steps in the scheme are described below.

A model structure of the KcsA channel in its
open state

The KcsA channel was solved in its closed conformation (Protein Data Bank

identification 1k4c (4)). We modeled the open form of KcsA using the

structure of KvAP (Protein Data Bank identification 1orq (10)), which was

determined in an open conformation, as a template. Of the available tem-

plates, KvAP has the highest sequence similarity in the pore domain (;30%

sequence identity). The channel KvAP was previously suggested as a

plausible template for modeling KcsA in its open form (41). More infor-

mation about modeling and validation procedures, as well as the model

structure (Fig. 2 a), is provided in the Supplementary Material (Data S1).

Types of motions that were considered

The KcsA tetramer includes 412 amino acids, each of which contributes two

torsional backbone degrees of freedom to the overall dimensionality of the

conformational space. In addition, side-chain flexibility throughout the gating

phase is considered. Thus, the number of dofs is enormously high, and we used

the following measures to reduce the computational load while maintaining an

appropriate representation that accounts for relevant degrees of freedom. First,

following a widespread modeling assumption, bond lengths and angles were

held fixed throughout the search in conformational space (42).

Second, all known structures of potassium channels, including those of

KcsA (Fig. 2 a) and KvAP, manifest a fourfold rotation symmetry around the

pore axis. We assumed that this symmetry, which is anticipated for homo-

tetramers, is retained throughout the pathway, thus reducing the number of

dofs fourfold.

Third, the structures of the open and closed states of the channel are very

different from each other, and the rmsd between their C-alpha atoms is 5.95 Å.

However, the selectivity-filter regions of these structures are virtually the

same (rmsd of 0.33 Å between the C-alpha atoms of amino acids

T75VGYG79; see the Supplementary Material S2, Data S1). Thus, the

backbone of the selectivity filter was held fixed. Following the same logic,

we also fixed the backbone of the turret loop between ARG52 and THR61.

This loop is located in the extracellular region farthest from the gate region,

and connects the TM1 helix to the pore helix, which is in turn connected to

the selectivity filter and TM2 helix (Fig. 1, gray). The two ends of this loop

remain fixed between the open and closed conformations, and do not seem to

relate to the orientation of interhelices (see the Supplementary Material S2,

Data S1). Because the proper treatment of the motion would require sampling

of many conformations of this loop, we also fixed this region. Significant

differences between the structures are apparent only within TM1 and TM2.

Hence, we allowed full movement of all backbone torsion angles of these

helices, and of all the side chains, including regions with a fixed backbone.

In total, we allowed for 104 backbone degrees of freedom per monomer in

our simulation (because of symmetry, this is also the total number of back-

bone dofs for the entire channel). In addition, all side-chain x angles were

allowed to rearrange, by sampling conformations from a backbone-depen-

dent rotamer library (43). Each residue was represented by a number of dofs

that corresponds to the number of x angles needed to define the side-chain

conformation. This number ranges from 0 for small amino acids, such as

GLY and ALA, to 4 for large and flexible amino acids, such as LYS, defined

by 4 x angles. Because the side chains were not treated symmetrically, this

adds to each of the four monomers 83 residues with sampled side-chain dofs,

totaling 4 3 83 ¼ 332 residues with sampled side-chain dofs.

Algorithm for motion-path generation

Pathways were generated based on a method described in our earlier study,

within a different context (37). One major difference between these studies is

that instead of constructing a single tree, rooted at the initial conformation (i.e.,

the native, closed conformation of KcsA), we followed a prevalent practice in

robotics and constructed two trees, rooted in the initial and goal (Fig. 2 a)

conformations. Two conformation trees were rapidly grown, starting from both

initial and target conformations, and each path in the tree stands for a putative

motion pathway. A single-tree version of the algorithm was also implemented,

in which only the initial conformation was used as input.

The algorithm was implemented within the Rosetta modeling project (42).

The energy score of generated conformations was calculated with a version

of Rosetta score 12 that included attractive and repulsive van der Waals and

hydrogen-bonding terms, and a statistical bias for prevalent Ramachandran

torsion angles and side-chain rotamers. Side chains of initial and goal con-

formations were optimized using the Rosetta full-atom repack procedure, and

side-chain intermediate conformations were optimized using the Rosetta

greedy rotamer-trial procedure (44). A detailed description of the algorithm

is provided in the Supplementary Material S3, Data S1.

RESULTS

Pathways between open and closed
conformations of KcsA

We applied the RRT algorithm, described in detail in the

Supplementary Material S3 (Data S1), to search for pathways

between the (model of the) open and closed conformations of

the KcsA channel (Fig. 2 a). The KcsA channel was repre-

sented in atomic detail, and the conformational space was

explored and subjected to the Rosetta energy function, as
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described in Methods. Low-energy conformations were

added to the tree to efficiently explore the free conformational

space. Side-chain clashes were resolved, and their interac-

tions were optimized, using the Rosetta greedy rotamer-trial

procedure (44). Two motion pathways, one from the open

and the other from the closed conformation, were generated

and connected through a pair of similar conformations (Fig.

2 a, middle, red dashed line). The threshold of a C-alpha

rmsd of 1.6 Å was used to connect nodes from the different

trees. In practice, many pathways were connected between

much closer conformations of up to 1.15 Å apart.

Starting from the initial and goal conformations, we gen-

erated 100 pathways from 12 RRT trees. The overall run took

,1 h to complete (on three dual-core dual CPU, AMD

2.2Ghz/1MB computers, on a Sun cluster). The RRT algo-

rithm examined, on average, 50,082 conformations per tree,

and the final tree comprised 28,300 feasible conformations, on

average. Subsequently we aligned, merged, and clustered the

pathways, using the hierarchical approach described in The-

ory. A final pathway of lower energy (Fig. 5 b) was generated

by merging low-energy lags of motion from aligned input

pathways. The overall procedure is outlined in Fig. 2 d.

A possible three-phase mechanism
of channel-opening

In the simulation, the TM helices are readily observed fol-

lowing a curved rotational motion that resembles the opening

of an iris, combined with a corkscrew motion of the intra-

cellular ends of the helices to open the pore (Fig. 5 a and the

Supplementary Material S4, Data S1). This is in agreement

with previous computational predictions (19,22) and a recent

single-molecule study that supported the suggested rotational

mechanism for channel-opening (20). However, our analysis

offers new insights. We suggest here that channel-opening

follows a three-phase mechanism, involving safe-lock (Fig.

5). The suggested phases, described from an intracellular

perspective, are as follows.

Following a phase of Brownian motion (conformations

1–5), the channel is unlocked from its closed state by a slight

clockwise movement (conformations 6–12) that involves

bridging over a significant energy barrier (Fig. 5 b).

Second, the channel opens through a bending motion, in

which the intracellular part of the TM2 helix slides over the

neighboring TM2 helix, moving counterclockwise and lat-

erally away from the pore axis (conformations 13–18).

Finally, the channel is locked back in the open confor-

mation by a counter motion (conformations 19–23).

Although the suggested mechanism obviously calls for

further validation, it is interesting to examine its function as a

control mechanism for channel-gating. By this mechanism,

channels in their closed form are trapped in an energy min-

imum. Channel-opening can be triggered by an unlocking

mechanism that involves a preemptive small movement,

which allows a subsequent large-scale motion for opening of

the channel. Such a ‘‘security mechanism’’ may reduce the

frequency of unwanted events of channel-opening, which

may have negative effects on a living cell.

To characterize the predicted pathway further, a detailed

analysis of channel-opening in the gate region was per-

formed. We used the program HOLE (45) to calculate the

opening radii of the main axis of the channel. Analysis of two

bottlenecks (Fig. 5, c and d) along the channel gate demon-

strates the way that such a three-phase mechanism might

work. The channel-opening throughout the motion pathway

is plotted at two bottlenecks that determine the minimum

constriction of the pore, at depths of 23 Å (red) and 35 Å

(green). The importance of these regions in the predicted

motion pathway is evident when comparing these plots to the

minimal channel-opening over the whole gating region (be-

low a depth of 40 Å), shown as a black curve, and repre-

senting the overall opening of the channel. After a phase of

Brownian motion (conformations 1–5), the channel starts to

unlock at depth of 35 Å (conformations 6–12). In agreement

with our suggested mechanism, the widening of the cavity at

a depth of 35 Å does not manifest itself in an overall opening

of the channel (black curve). However, this cavity might

provide the greater freedom of motion needed to allow the

next phase, i.e., a sharp opening of a cavity at depth of 23 Å

(conformations 13–18), opening a bottleneck, and allowing

free flow of the ions.

From closed to open conformation, using a
single RRT tree

We examined whether the independent growth of an RRT

tree from its initial closed conformation can independently

reach the open conformation. We applied the RRT method in

its original context, using a single tree (37). After exploring

30,000 conformations in a 3-h run, a conformation that is

,1.6 Å from the open conformation was detected by the

algorithm, with a direct motion pathway from the initial

conformation. Considering the vast number of degrees of

freedom used here, we believe this demonstrates the effi-

ciency of the algorithm and the energy function for sampling

the conformational space. Hence, RRTs can be used to com-

plement memory-less search procedures such as Monte Carlo

simulations, and even procedures such as taboo-search (46)

that use short-term memory.

DISCUSSION

We introduce a unique framework for the very rapid gener-

ation, alignment, and comparison of pathways between two

known protein conformations. We also present an algorith-

mic implementation of these ideas, and we used it here to

study conformational changes in the KscA channel. Path-

ways were generated and subjected to energetic consider-

ations. The actual run took about 1 h. But it should be noted

that the calculations begin with preparations, including the

building of the open-state model structure of KcsA.
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A putative safe-lock mechanism for the opening
of the KcsA gate

Our studies suggest a plausible pathway between the open and

closed states of the channel, which might suggest a three-phase

safe-lock mechanism for channel-opening. If such mechanism

is valid, it might lead to interesting implications, because ion

channels take part in vital cellular processes (1). That said, as a

computational model, it should be treated with appropriate

caution, and subjected to further validations. Although the

conformations along the pathway are stereochemically sound

(Supplementary Material S1. Data S1), the pathway may best

be regarded as a speculation that should be examined in wet-

FIGURE 5 Putative three-phase motion pathway between closed and open conformations of KcsA. (a) Intracellular perspective of the KcsA channel in

closed conformation (gray), with location of the Ca atom of residue V155 along the pathway marked in space-fill representation using different colors. The

optimal pathway begins with Brownian motion (in gray). Phase I of the pathway, where the closed conformation is unlocked, is shown in cyan. Phase II, where

the gate opens, is shown in purple, and phase III, where the channel is locked in its open conformation, is shown in red. (b) Energy profile of pathway. Arbitrary

units of the Rosetta energy function were used (see Methods). The closed conformation (step 1) was assigned the lowest energy, and is the most stable. The first

five steps are around the initial conformation, and are not an integral part of the opening pathway. The pathway from the closed conformation to the (model

structure of the) open conformation (step 23) involves crossing an energy barrier (step 12). This is exactly the transition between phases I and II in a. (c and d)

HOLE (45) analysis of changes in profile of the channel pore along the pathway. (c) Magnitude of the radius along the pore axis (Z). The green and red curves

were obtained using the open and closed conformations, and the blue curves were obtained for intermediate conformations along the pathway between these

two end-conformations. The gate is around Z¼ 20 Å, and the selectivity filter, which was held fixed, is around Z¼ 50–60 Å. (d) The green and red curves mark

changes in the pore radius at Z ¼ 35 Å and Z ¼ 23 Å along the pathway, congruently. The black curve marks changes in pore radius at minimal constriction.

The depth of the minimal constriction along the Z axis changes along the motion pathway.
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laboratory experiments. We make the pathway available, as a

movie and a series of Protein Data Bank files, to facilitate the

design of such experiments (Supplementary Material S4, Data

S1). However, it is important to note that different runs using

different parameters and energy functions might lead to dif-

ferent pathways. In this sense, we believe that the main power

of the framework presented here is its capacity to explore a

large number of putative pathways rapidly under varying

constraints. These may be used to generate hypotheses that

may be tested in experiments.

A recent single-molecule study of the KcsA channel was

interpreted to indicate an overall corkscrew rotational motion

of the intracellular ends of TM2 helices (20). Our results, as

well as the results of previous computational analysis using

the Gaussian-network model (19), are in agreement with

these new data. Moreover, we provide a (hypothetical) mo-

lecular interpretation of the single-molecule study.

Tikhonov and Zhorov (22) explicitly assumed a lateral

outward movement of the channel by inflating and deflating

the cylinder at the pore region, and then applying Monte

Carlo simulations. Their predictions resemble ours, but only

to a certain extent (compare our Fig. 5 a with Fig. 5 in

Tikhonov and Zhorov (22)). A similar approach was used

within the context of steered molecular dynamics in a

detailed study by Biggin and Sansom (21). Unlike these two

studies, we applied a symmetry operator over the four sub-

units of KcsA, and obtained a symmetrical motion. We

assume that the motion was symmetrical because of the

symmetry found in all potassium channels, but whether

nonsymmetrical motion is a methodical artifact or a real

property of the KcsA channel is not fully clear. Interestingly,

as in the work of Biggin and Sansom (21), the helices did

not disintegrate throughout our simulations, although the

change in their internal coordinates was responsible for the

movement.

All in all, this computational investigation complements

experimental studies of KcsA using NMR (47), electron

paramagnetic resonance (48), and single-molecule techniques

(20). Ultimately, through the integration of experimental and

computational results, we will further our understanding of

channel-gating significantly.

Role of the selectivity filter

Here, our motion pathways were restricted to the gate region.

The selectivity-filter region was examined exhaustively by

molecular-dynamics simulations, as reviewed elsewhere

(49). Cordero-Morales et al. (50) suggested that the filter

undergoes conformation excursions. However, gating events,

which are on the order of microseconds, cannot be simulated

by pure molecular-dynamics simulations. Biggin and Sansom

(21) used steered molecular dynamics to suggest possible open

states for KcsA. In their simulations, the gate region underwent

substantial conformational changes, whereas the selectivity-

filter region was not altered significantly by the gate-opening,

suggesting that gate-region dynamics are decoupled from

those of the selectivity filter. Although the selectivity filter

might change its conformation during the opening of the gate

(50), these modifications are relatively minor (albeit of func-

tional importance) compared with the conformational changes

that occur in the gate region. In fact, the rmsd between the

C-alpha atoms of the source (Protein Data Bank identification

1k4c) and target (a model of KcsA according to the KvAP

structure) selectivity filters (T75VGYG79) is 0.33 Å, com-

pared with 5.95 Å considering all the C-alpha atoms. Thus,

generating motion pathways between these two conformations

by RRTs will naturally lead to immense variations in the gate

region rather than in the selectivity filter.

The energy function

Because this study involves a TM channel, we excluded

solvation-related terms from the Rosetta scoring function. We

used Rosetta’s van der Waals potential, hydrogen-bonding

score, and the statistical Ramachandran and Dunbrack rotamer

scores. A designated energy function for TM proteins was

recently introduced into Rosetta (51), and we look forward to

using it. Unfortunately it was not publicly available as of this

writing. It would be interesting to examine the sensitivity of

the suggested motion pathway to different force fields. We

previously (37) applied the RRT algorithm, using very sim-

plistic energy functions that consisted of the Lennard-Jones

term of either GROMOS (52) or CHARMM (53). We re-

peated these tests with KcsA. The pathways obtained using

these simplistic energy functions differ from each other in

certain aspects, and are similar in others. For instance, one of

the pathways, observed when using the CHARMM Lennard-

Jones potential alone, leads to a fuzzy lateral opening of the

TM2 helices (data not shown). This is indicative of the im-

portance of the choice of energy function. Because the

quality of the Rosetta energy function is still questionable,

our results should be taken with a grain of salt.

Interestingly, although we did not explicitly impose helix-

favoring restraints, the helices retained their regular struc-

tures and, in essence, did not deform. This is attributable, in

part, to the Rosetta energy function’s inclusion of a bias to-

ward prevalent Ramachandran torsion angles. When starting,

as we did, from helical conformations and moving in small

increments, it is difficult to deform the helices significantly.

Further investigation showed that the low energy cutoff (of

zero) that was used here essentially allows only tightly

packed conformations of the type found in real proteins, and

prevents significant helix deformations. Control runs that we

conducted using higher-energy cutoff values (of 600 and

5000; energy is measured in Rosetta arbitrary units) showed

the emergence of much less packed conformations that in-

cluded deformed helices (data not shown).

Taking into account the solvation component of the free

energy in an accurate way for a membrane channel, such as

KcsA, is difficult, and perhaps even impossible. The standard
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treatment within the Rosetta energy function excludes the

membrane environment, and involves a large and unneces-

sary desolvation free-energy penalty of all lipid-exposed

residues. It also excludes contributions of the polar head-

group region of the membrane. Thus, it is very unsatisfying.

Moreover, even if the presence of the membrane is taken into

account implicitly, using some mean-field approximation,

the treatment of the channel pore itself remains a major

challenge. The small size of the pore may impose very spe-

cific arrangement of water molecules. Thus, it is not clear that

a mean-field treatment, based on bulk water, would ade-

quately describe desolvation in this region. To avoid all this,

and because we believe that the motion is dominated by

geometrical and packing restraints, we excluded the solvation

term from the outset.

Following the same line of thinking, we also excluded the

effects of lipids. Again, an explicit and accurate description

of protein-lipid interaction is not feasible, and we suspect that

any mean-field approximation may be erroneous. Thus, we

eliminated these contributions altogether.

The motion between the open and closed conformations of

the channel is driven by external effects, such as ligand-

binding or changes in membrane potential. Here, such factors

were not explicitly taken into account. Instead, we used two

initial conformations and searched for a root that connects

them. Namely, starting from the initial conformation, the

effects of external perturbations were replaced by conducting

a search in conformational space with a bias toward the goal

conformation. This strategy is beneficial in that it bypassed

the need to describe external effects in molecular detail.

However, at the same time, we cannot address questions on

the effects of external factors.

In general, the results, and the suggested pathway for

channel-opening in particular, are sensitive to the choice of

energy function.

Incorporation into the Rosetta package

We integrated our software into the Rosetta open-source

project for modeling proteins (42), and examined pathways

using Rosetta scoring, as described in Methods. After a cer-

tain period of testing for stability, our tool will be made

available to the public.

General framework for generating, aligning, and
comparing putative pathways

We emphasize that the framework presented here is indepen-

dent of the particular choice of energy function. In particular,

our approach to compare, align, and cluster the generated

pathways, and rank them based on various criteria, may be

useful in a much broader context. The pathways generated by

the RRT algorithm comprise conformations in which each two

consecutive conformations are close to each other in three

dimensions, in both rmsd and internal-coordinates values.

Thus, the dynamic-programming algorithm for aligning path-

ways is well-defined in this case. When using the approach

within the context of other applications, the algorithm can be

adapted by the generation of intermediate conformations that

connect dissimilar consecutive conformations. We demon-

strated that this approach can merge low-energy motion

pathways into one or more representative pathways of higher

quality, which can then be subjected to further analysis and

comparison.

Future research

This study examined in detail the feasibility of our motion-

prediction approach, and our studies of KcsA were sufficient

for that purpose. A clear advantage of our approach is speed,

such that a whole gamut of pathways can be generated,

aligned, and compared in a matter of minutes or hours. We

plan to examine more cases, and ultimately establish a da-

tabase of feasible pathways between all proteins with two or

more known conformations. In this respect, we will follow

the pioneering work of Echols et al. (54). As experimental

methodologies for observing proteins in motion are on the

verge of becoming a reality (e.g., Shimizu et al. (20)), com-

putational methods for motion prediction are as relevant as

ever, and can both benefit from, and contribute to, our un-

derstanding of molecular motion.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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