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Chapter 17 

Modeling and validation of transmembrane protein structures 

Maya Schushan and Nir Ben-Tal 

Abstract 

Transmembrane (TM) proteins comprise some 15% to 30% of the proteome, and the number of 

reported 3D structures has grown rapidly over the past decade. Nevertheless, owing to technical 

difficulties, the vast majority of TM protein structures are yet to be determined. Computational 

modeling techniques can be used to provide the essential structural data needed to shed light on 

structure-function relationships in TM proteins. 

In this chapter, we present some of the advanced modeling approaches that can help 

resolve the unique challenges encountered in predicting the three-dimensional (3D) structure of 

α-helical TM proteins. The usefulness of standard homology-modeling procedures is limited 

because the number of available TM-protein structures is small. In many cases, moreover, it is 

difficult to align the sequences of the query and the template proteins because of the weak 

sequence similarity between them. Additional ways to predict the location of TM helices in the 

polypeptide chain, by employing fold recognition, hydrophobicity scales, or other tools, may be 

helpful in improving the alignment accuracy. When a structural template is not available, low-

resolution electron-density maps, obtained from cryo-electron microscopy (cryo-EM) or 

preliminary X-ray diffraction studies, can be used to restrict the search in conformational space. 

At the right resolution, the locations of TM helices can be roughly determined even when the 

amino acids are not visible. When these data are combined with physicochemical characteristics 

of amino acids (such as their hydrophobicity) and with evolutionary information, the location of 

the amino acids can be modeled.  

After modeling, it is imperative to assess the quality of the structure and estimate the 

level of confidence of the prediction. To this end, it is often helpful to estimate the evolutionary 

conservation of the amino acids and project them onto the model-structure. The expectation is 
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that the protein core and functional regions (such as narrow channel pores and ligand-binding 

sites) will accommodate evolutionarily conserved amino acids while the periphery will be more 

variable. Deviations from this pattern might reflect inaccuracies in the model. Furthermore, 

because X-ray crystal structures of TM proteins are often determined on the basis of electron-

density maps of limited resolution, it might be useful to examine their evolutionary profiles as an 

independent measure of their validity. 
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17.1  Introduction  

TM proteins comprise an estimated 15% to 30% of bacterial and eukaryotic genomes [1-3]. As 

gateways to the cell, TM proteins participate in a variety of processes, such as energy production, 

transport of metabolites, and cell–cell communication. Structural information is needed in order 

to uncover the components that contribute to these diverse functions and to the structure-function 

relationship. In addition, TM-protein structure might provide an interpretation at the molecular 

level for mutations and enable structure-based drug design [4]. However, despite the substantially 

growing numbers of reported TM-protein structures, owing to technical difficulties only some 

have been experimentally solved to date [5]. As a result, TM-protein structures currently account 

for less than 2% of the Protein Data Bank (PDB) [6]. Moreover, most of the available structures 

are of bacterial origin, whereas only a small minority are of eukaryotic TM proteins [7].  

Polytopic TM domains exhibit one of two possible folds: an α-helix bundle or a β-barrel 

[8-10]. The α-helical proteins are widespread, whereas distribution of the β-barrels is limited to 

mitochondria, chloroplasts, and the outer membranes of Gram-negative bacteria [9]. Because the 

two types display distinct characteristics, there is some variation in their 3D-modeling. In this 

chapter we deal only with the α-helical type. Owing to the uniqueness of the membrane 

environment, many features of TM proteins are quite distinct from those of soluble proteins (e.g. 

[11-14]). This has significant implications for the prediction of their structure. 

 

17.1.1 Traits and topology of helical TM proteins  

TM proteins display an amino-acid composition that is quite different from that of soluble 

proteins [11, 15, 16], for example, with regard to the proportion of hydrophobic residues [13, 17]. 

Strongly polar residues are less abundant in TM proteins than in soluble ones [18], as their 

transfer from the aqueous phase to the hydrocarbon region of the membrane is associated with a 

high energetic penalty [10, 19, 20]. As might be expected, the extra-membrane regions in the TM 

proteins, which interact with the aqueous phase, are much more hydrophilic than the membrane-

embedded helices. There are two other noteworthy characteristics of TM proteins: von Heijne’s 

“positive-inside” rule [21] (discussed in chapter 6) and the existence of "aromatic belts”, i.e. an 

abundance of Trp and Tyr residues near both ends of the TM helices [15, 17]. Additionally, the 

structural context of proline residues in TM helices was explored in several studies [10, 22, 23], 

showing that in many cases proline residues induce distortions such as kinks or bends in central 
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regions of TM helices, where they contribute to function, conformational changes, and folding 

(e.g. [24-26]). In addition, Yohannan and co-workers showed that kinks often correspond to 

positions exhibiting an abundance of proline residues (>10%) in multiple sequence alignments 

(MSAs) [27]. Thus, even when a proline is not included in the sequence itself, identification of 

proline peaks in alignments might also offer some information about specific features of an α-

helical TM protein.  

 The membrane topology of a query protein can often be identified on the basis of its 

amino-acid sequence, and is addressed in detail in chapter 6, with focus on TM prediction 

methods. Some 20 years ago, it was reported that algorithms for secondary structure prediction 

could not accurately predict the secondary structure of TM proteins [28]. A recent study, 

however, showed that modern algorithms, developed for soluble proteins,  are almost as precise 

for TM proteins as they are for soluble proteins [29]. This suggested that TM and soluble α-

helices are more similar than was previously assumed. Other studies have clearly demonstrated, 

however, that some of the secondary structure propensities of TM proteins are unique [14, 30].  

A recent study showed that five kinds of specific interactions are abundant in TM 

structures, and can even be employed to correctly reassemble the native helix packing, starting 

from the backbone of the individual helices [31]. The contacts consist of hydrogen bonds, salt 

bridges, aromatic interactions, and packing of small and of aliphatic residues. These findings 

support the hypothesis that the interactions constrain the helix backbone, and facilitate folding 

and stability in TM proteins.  

 

17.1.2 Fold space of helical TM structures  

The contemporary view of the variety of folds presented by α-helical TM proteins differs 

significantly from the initial picture [7, 10, 16, 19]. In the past, α-helical TM structures were 

thought to be composed of strictly canonical helices that span the entire membrane in an 

approximately vertical direction, in correspondence with the first TM-protein structures to be 

solved (e.g. bacteriorhodopsin [32], Figure 1A). That view implied that the architecture of α-

helical TM proteins was rather limited, and that their modeling might therefore be much simpler 

than that of water-soluble proteins, which manifest a variety of folds.  

Once some additional structures were determined, however, it became clear that TM-

protein structures can also possess non-canonical helices, half or discontinuous helices, and re-

entrant loops. Furthermore, some helices are very short and do not span the entire membrane, 
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while others are extremely long and are tilted relative to the membrane plane. These observations 

are exemplified by the structures of the bacterial Na+/H+ exchanger NhaA [33] and the glycerol 

channel GlpF [34] (Figures 1B and 1C), as well as by numerous other TM structures. Overall, the 

fold space of the α-helical TM proteins is larger than initially estimated because their non-

standard structural elements are broadly distributed. It is restricted, however, relative to the fold 

space of soluble proteins, owing to the membrane environment as well as the distinct secondary 

structural elements and composition [8-10, 16]. This implies that the development of specific 

computational modeling tools for α-helical membrane structures is likely to be more complicated 

than originally thought, but is nevertheless still attainable.  

 

 

 

 

 
Figure 1. Simple vs. compound helical TM structures. The cytoplasmic side is downwards. TM helices 
are shown as red cylinders, beta-strands are yellow, and loops are green. In panels B and C, one of the TM 
helices is depicted as transparent for clarity. A. The structure of bacteriorhodopsin [32] shows a "classical" 
architecture, composed of almost straight helices spanning the membrane. B. In GlpF [34], many of the TM 
helices are tilted with respect to the membrane normal. The structure also features half-helices and 
intramembrane loops. C. The structure of NhaA [33] encompasses an assembly in which two of the 
segments are discontinued helices located opposite to one another. The structure also contains bent helices.  
 

17.1.3 General computational approaches to the modeling of TM proteins  

Given the scarcity of experimentally derived structures of TM proteins, especially those of human 

or other eukaryotic origin [5, 7, 35], computational modeling techniques provide an appealing 

alternative. Depending on the availability of data, there are in general three different modeling 

approaches: (a) comparative (or homology) modeling, (b) experimental data fitting, and (c) 

template-free prediction. For comparative modeling, the query protein should be related to a 

similar protein with a solved high-resolution structure. Methods known as fold recognition (or 

threading) are highly effective when the query protein has template structures that are difficult to 

detect on the basis of sequence similarity (addressed in chapters 9 and 10). Even in the absence of 

similarity to a known structure, experimental constraints combined with additional features such 

as the evolutionary profile might suffice to yield model-structures [7, 36]. In the next sections, we 

will discuss the principles and application of these two approaches. 
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Should these two alternatives fail, it is possible to resort to template-free prediction, an 

approach that has yet to become generally applicable [9, 37]. In principle, this approach utilizes 

only the rules of physics and chemistry to model the TM protein's structural features. However, 

"free modeling" techniques also include hybrid approaches.  These methods incorporate the use 

of structural data in the form of libraries of the structures of short fragments, as well as "statistical 

potentials" that represent common proximities of amino acids or atoms in proteins [37, 38]. 

Actually, the most advanced approaches, such as Rosetta and TASSER, offer a unified modeling 

framework, combing the different modeling approaches to better address various modeling 

challenges [39]. 

Within this category, two methodologies, namely Rosetta and TASSER, have featured 

novel membrane-specific adaptations. The Rosetta methodology has been used to successfully 

predict the structures of small soluble proteins [40], and was recently modified for helical TM 

proteins with promising performance in several test cases [41-43]. The TASSER methodology 

(discussed in chapter 12) has also been adapted for TM proteins, and was applied to predict the 

structures of hundreds of human G-protein-coupled receptors (GPCRs) [44]. Recently, the 

structure of a human GPCR protein, the β2-adrenergic receptor, was solved experimentally [45]. 

To assess the performance of the above two computational approaches, we compared their 

predicted β2-adrenergic receptor models to the native structure. Barth and Baker (unpublished 

results) predicted the structure of the β2-adrenergic receptor via the membrane-modified version 

of Rosetta. The starting point for the Rosetta model was a model obtained via homology 

modeling, with the structure of bovine rhodopsin serving as template. In the case of the TASSER 

algorithm this comparison was actually a blind test since the model was published, within the 

TASSER database of GPCRs [44], before the experimental structure came out. In both cases the 

TM region of the β2-adrenergic receptor model was reasonably accurate, with root mean square 

deviation (RMSD) values of 1.54 Å over 212 Cα atoms for the final Rosetta model (Figure 2A) 

and 1.7Å over 199 Cα atoms for the best TASSER model (Figure 2B). 

As might be expected, the extra-membrane regions were more difficult to predict than the 

TM regions. On examining the helical structural elements, we could see that the predicted TM4 in 

the Rosetta model was longer than the native TM4 in the X-ray structure (Figure 2A), whereas in 

the TASSER-derived model a longer helical segment relative to the native structure was predicted 

for TM6 (Figure 2B). Notably, one of the unique features of the β2-adrenergic receptor structure 

is an extra helix in the second extracellular loop (ECL2) (Figure 2). Both the TASSER and the 
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Rosetta models failed to predict this helix (Figure 2). However, the Rosetta model did predict a 

short helical segment in the region preceding the ECL2 helix (Figure 2A). Overall, both produced 

reasonably good models.  

Figure 2. Performance of Rosetta and 

TASSER in predicting the structure of the 
human β2-adrenergic receptor. In both 
panels, the crystal structure of the β2-adrenergic 
receptor [45] is shown as pink ribbons; the 
cytoplasmic region is downward and the short 
helix in ECL2 is marked. The Rosetta model 
(Barth and Baker, unpublished results) (purple) 
and the best TASSER model [44] (green) are 
superimposed on the native structure in panels 
A and B, respectively. The prolonged segments 
in predicted TM4 and TM6 are marked, along 
with ECL2 of the native structure. 

GPCRs, the largest family of TM signal-transduction proteins, include about 1000 human 

isoforms [46, 47]. Since they comprise approximately 50% of contemporary protein drug targets, 

there is particular interest in modeling their structures for purposes of drug discovery [48]. Up to 

now, efforts to model GPCRs have been based on a variety of computational approaches, ranging 

from homology modeling using the few GPCR structures available from experiments (reviewed, 

for example, in [49]) to specifically designed template-free methods (e.g. [44, 50, 51]), all of 

which are tailored for GPCRs. This is a research field of its own, and is beyond the scope of this 

chapter. The interested reader is referred to references [52-54].  

An objective assessment of structure prediction methods is provided by the CASP 

(Critical Assessment of Techniques for Protein Structure Prediction) experiments. The object of 

these biennial experiments, which started in 1994, is to assess current abilities and inabilities in 

predicting protein structure. During the experiment, different groups submit blind modeling 

predictions of various proteins. These predictions are later compared to the native structures of 

the proteins, which have already been determined experimentally but are not yet known to the 

participating scientists during the experiment [55]. Unfortunately, TM proteins are not used as 

CASP targets; thus, there is currently no generally accepted way to assess, directly and without 

bias, the application of available modeling techniques for TM proteins. 

 

17.2  Comparative modeling 

In comparative (or homology) modeling, currently the leading computational approach for 

generating protein models, a high-resolution, experimentally solved structure is used to produce a 
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model-structure of a homologous protein for which structural data are not yet available [38, 56-

58]. The technique has been successfully applied to numerous soluble proteins and is considered 

to be the most accurate approach to structural modeling available today [56-58]. Recently, Forrest 

and co-workers showed that comparative modeling can also be applied to TM proteins to produce 

models of similar accuracy to those of soluble proteins [29]. To this end, the structures of 11 TM-

protein families were examined, covering a range of folds and sequence similarities. In line with 

previous observations for soluble proteins [58], the analysis of Forrest et al. [29] showed that the 

accuracy of TM model-structures produced via comparative modeling depends, as anticipated, on 

the similarity between the query and the template sequences. With decreasing similarity between 

the sequences the precision of the produced model structures also decreases, owing to two factors: 

alignment errors and inherent structural differences between the two proteins.  

 Using a previous division of TM proteins from 95 genomes into families [59], Granseth 

et al. examined the relationship between prokaryotic and eukaryotic TM proteins [35] with the 

object of assessing the extent to which comparative modeling could derive structural models of 

eukaryotic and even human TM proteins from available prokaryotic structures. Their analysis 

revealed that 13% of eukaryotic TM families include also members of the prokaryotic kingdom. 

Of these 256 families, solved structures exist for representatives of only 29 [35]. Although these 

data are not particularly encouraging, they nevertheless indicate that a significant number of 

eukaryotic TM models could be obtained by comparative modeling. In this respect it should also 

be noted that the sequence similarity between the eukaryotic query protein and the prokaryotic 

template is often low, further complicating the production of an accurate pairwise sequence 

alignment between them [29, 57, 58]. Since comparative modeling is largely dependent on 

pairwise alignment (discussed below), this presents a major obstacle in obtaining TM model-

structures of high quality. 

This difficulty is best illustrated by a description of some recent efforts to model TM 

human proteins based on their remote prokaryotic homologues. The serotonin transporter of the 

neurotransmitter:sodium symporter (NSS) family was modeled using the eubacterium Aquifex 

aeolicus leucine transporter (aaLeuT) as template [60]. An available alignment [61] was refined, 

because of low sequence identity between the prokaryotic and eukaryotic family members, by the 

use of various bioinformatics tools along with elaborate experimental data. Interestingly, the 

model-structure was utilized to identify a chloride ion-binding site in Cl– dependent transporters, 

a prediction confirmed by experimental assays [60].  
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In another study, the extremely low sequence identity between the human Na+/H+ 

exchanger NHE1 and NhaA of E. coli (<15%) prompted a composite modeling approach in 

which various state-of-the-art computational modeling tools were integrated to achieve correct 

alignment of the two proteins [62]. Supported by elaborate mutagenesis, the model revealed 

common properties of the inhibitor-binding sites of NHE1 and NhaA, as well as a putative ion-

transport mechanism for NHE1 [62].  

In yet another example, although the intriguing cystic fibrosis TM conductance regulator 

(CFTR) is a chloride channel, the structure of Sav1866, a multi-drug transporter of the same 

superfamily, was used as template for its modeling [63]. To overcome the obstacle of low 

sequence identity, their divergent sequences were aligned through a technique of hydrophobic 

cluster analysis [64]. The model-structure, which demonstrated good correlation with 

experimental data, offers a molecular-level insight into the contacts that might be affected as a 

result of the deletion of Phe508, the most abundant cystic fibrosis-causing mutation [63].   

 

17.2.1 Work scheme  

The scheme for predicting a structure by means of homology modeling is generally the same for 

soluble and TM proteins. It can be divided into four major steps: (a) template search and 

selection, (b) pairwise sequence alignment of the query and the template sequences, (c) model 

building, and (d) evaluation and validation. It is noteworthy that depending on the outcome of the 

validation stage, it might be necessary to refine the model structure by repeating the previous 

stages. This cycle can be repeated until a model of the best possible quality is produced. Because 

of the paucity of experimentally solved TM structures on the one hand and the exclusive features 

of the proteins on the other, it is necessary to develop unique methods for each step. Accurate 

prediction of the membrane topology (addressed in chapter 6) is likely to be helpful in the first 

two stages, which are the keys to proper modeling. However, because the structural data are 

limited, the computational aspects of membrane-specific homology modeling are still 

underdeveloped [37]. In the following sections we provide a description of the fine points of these 

work steps for homology modeling of α-helical TM proteins. The last step, model evaluation and 

validation, will be presented in section 17.4, as it is identical for models generated via homology 

modeling (section 17.2) and via experimental data fitting (section 17.3).  
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17.2.2 Template search and selection 

17.2.2.1 Simple and advanced search 

When attempting to determine the structure of a TM protein, we first search for a potential 

template or templates. This is easy if the structure of a close homologue of the query protein has 

already been solved, but difficult if it has not. The number of available TM structures, however, is 

very small, which makes it hard to find suitable structural templates. 

Because similar sequences adopt similar structures, the initial strategy in searching for a 

potential template is usually to employ sequence-search methods such as BLAST [65]. Many TM 

proteins possess water-soluble domains in addition to the TM region, which may appear at the N- 

or C-termini or between consecutive TM helices. By excluding large extra-membrane regions and 

using only the sequence of the TM domain to be matched with PDB-derived sequences, it may be 

possible to produce more accurate results since they will be focused only on the area of interest. It 

is worth noting that the "low-complexity filter" included among the common search tools might 

remove hydrophobic segments, and should therefore not be applied [66]. In addition, Hedman and 

co-workers showed that the search for homologues (tested on a benchmark of GPCR sequences) 

can be improved by utilizing predictions of the location of the TM segments in the sequence [66]. 

  When the simple search for a template fails, advanced sequence-based search could be 

employed. It is also possible to apply fold recognition or threading algorithms to detect putative 

structural templates. These algorithms perform two modeling steps: template identification and 

alignment of the query and the template sequences [38]. Chapters 9 and 10 describe these 

approaches, which are currently employed in the same manner for both soluble and TM proteins.  

 

17.2.2.2 Template selection 

The next step is to select the most suitable template(s) from the detected hits. For TM proteins 

this is easy, simply because it is rare to find any templates at all. The challenge here is rather to 

estimate the suitability of a putative template whose sequence similarity to the query protein is 

often low. Because resemblance between the two sequences correlates with model accuracy [29], 

it is important -as in the case of soluble proteins- to assess their similarity and their evolutionary 

relationship [58]. The number of TM helices in the query protein and in the template proteins is 

likely to be the same. Thus, the known (or predicted) membrane topology of the query protein 

will probably aid in selection of the most suitable template. In view of the known relationship 

between structure and function, experimental evidence of functional similarity between the two 
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proteins might be taken as an indication of the template’s suitability. This was done, for example, 

in the modeling of NHE1 based on the structure of NhaA [62].  

 

17.2.3 Aligning the query and the template sequences  

Aligning the query and the template sequences as accurately as possible is a crucial step in model 

building, as the alignment largely determines the 3D location of each of the residues of the query 

protein [29, 67]. Interestingly, a recent study by Gao and Stern [67] showed that the accuracy of 

TM models is significantly improved when sequence identity between the query protein and the 

template exceeds 30%, and is substantially reduced at weaker sequence identities. Exactly the 

same threshold values for correct modeling also apply in the case of soluble proteins [68]. We 

next address two cases: alignment with high and with low sequence similarities (Figure 3).  

Figure 3. Computational 

approaches for the 

alignment of query and 

template proteins of high 

and low similarity. A. If the 
query and the template 
sequences are close enough 
(>30% identity) it is possible 
to use simple sequence-to-
sequence alignment, but it is 
often more accurate to extract 
the pairwise alignment from 
an MSA. B. As sequence 
identity decreases, it becomes necessary to combine more sources of data in order to align the sequences 
correctly. These include fold recognition, profile-to-profile methods, TM prediction methods, MSAs, and 
available experimental data.  

 

17.2.3.1 High similarity 

A rather simple sequence-to-sequence alignment might suffice when the query and the template 

proteins exhibit sequence identity of more than 30%, covering all the TM segments of the 

sequence, whereas extraction of the pairwise alignment from an MSA might add essential 

evolutionary information and thus improve the alignment accuracy (Figure 3A) [29]. To ensure 

MSA integrity and avoid sequence fragments, it might be useful to include in the MSA only those 

sequences that share all of the query protein’s TM helices. Forrest and co-workers, after 

examining the performance of different MSA algorithms in securing the pairwise alignments 

needed for TM-protein modeling [29], reported that advanced alignment methods, such as 

MUSCLE [69] or T-Coffee [70], are more effective than the traditional Clustal W [71].  
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Amino-acid substitution matrices are essential for generating both pairwise and multiple 

sequence alignments. The widely used substitution matrices, such as PAM [72] and BLOSUM 

[73], were derived from datasets of homologous soluble proteins. Additional substitution 

matrices, e.g. JTT TM [13], PHAT [74], and SLIM [75], were developed specifically for TM 

proteins. To the best of our knowledge, no study has yet compared all three matrices. However, 

when the abilities of both matrices in searching for homologues searches were compared using a 

dataset of GPCRs, SLIM was predicted to outperform PHAT [75]. When the same TM dataset 

was examined, both SLIM and PHAT were shown to be more accurate than the traditional 

BLOSUM. On the other hand, the PHAT matrix performed better than JTT TM [74]. In this case, 

the test set was composed of 100 sequences from 74 TM-protein families that were utilized as 

query proteins for database searching.  

Theoretically, in bipartite alignments the membrane matrices should be utilized to align 

TM regions, while the extra-membrane regions should be aligned with the traditional matrices. 

Such an approach is implemented by STAM, which adds high gap penalties in predicted TM 

regions. However, the STAM method was evaluated only for GPCRs and was compared only to 

Clustal W [76]. Forrest et al., on examining the performance of bipartite alignments on a diverse 

dataset of TM proteins, found that performance was worse when they used a combination of the 

PHAT and BLOSUM matrices than BLOSUM alone [29]. Nevertheless, some improvements 

over the commonly used alignment methods were seen for the PRALINETM method, which also 

incorporates the PHAT matrix for TM alignment [77]. This was attributed to a more accurate 

prediction of the TM segments. A systematic evaluation of the substitution matrices and their 

performance in bipartite alignments has yet to be carried out.  

 

17.2.3.2 Low similarity 

When the query and the template proteins are distant homologues (sequence identity <30%), as is 

often the case when eukaryotic proteins are aligned to prokaryotic proteins (e.g. [61-63]), the 

straightforward approach described above might not suffice [29]. In such cases it is rather 

difficult to produce a fully continuous alignment. However, the TM helices are typically more 

conserved than the extra-membrane regions and it is often possible to align them properly. 

Indeed, such fragmented alignment can be used for model building of the TM domain. So the 

problem becomes a matter of detecting the TM helices of the query protein and their subsequent 

alignment to the known helices of the template. The TM helices are not only strongly 
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hydrophobic, but are also usually preserved within the protein family. Hence, in an MSA of the 

query protein and its homologues, these regions often appear as gap-less segments of a strongly 

hydrophobic nature; this observation simplifies their detection. 

Fold recognition approaches, including profile-to-profile alignments, not only enable 

remote relationships between query and template proteins to be detected, but also produce a 

sensitive pairwise alignment. The HMAP method [78] produced more accurate alignments 

between query and template TM proteins than those produced via sequence-to-sequence and 

MSAs, especially in cases of low sequence similarity [29].  

Overall, when attempting to properly align sequences of low identity, it is recommended 

to use a range of tools and all the available data (Figure 3B). These include MSAs, results of fold 

recognition approaches, TM-helix predictions, and the available biochemical and biophysical 

experimental data (for example, site-directed mutagenesis and accessibility measurements). In the 

optimal situation, data from all sources will overlap, thus consolidating the prediction. But even 

in less favorable situations, in which conflicting data might be obtained, often there is consensus 

at least with regard to the location of some of the TM helices. When data from various sources are 

in conflict concerning the location of a particular TM helix, and in the absence of a more 

compelling basis for resolution, decisions can be made based on the majority of (independent) 

data. Alternatively, 3D models can be built on the basis of more than one sequence alignment.    

 

17.2.4 Building a 3D model-structure 

The model-building process includes construction of the protein core based on an existing 

structural template, and modeling of the backbone and side chains of peripheral regions for which 

a template might not be available [57]. For α-helical TM proteins the core includes the TM 

helices, while the periphery contains the extra-membrane loops that tend to vary even between 

related TM proteins. 

As in the case of soluble proteins, the building process is carried out via one of the many 

available applications, such as Modeller [79] and NEST [80]. The performance of model-building 

methods specifically for TM proteins was recently investigated in two studies. Reddy et al. [81] 

assessed the model-building performance of five methods (or combinations of methods): 

Modeller [58, 79], the MOE [82] homology module of InsightII [83], Swiss-PdbViewer [84, 85] 

and models produced via initial construction by InsightIIHomology followed by Modeller 
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refinement. Although this analysis did not include state-of-the-art programs such as NEST [80], 

PLOP [86-88], or Rosetta's template-based module [89], it was an initial attempt to evaluate the 

performance of some algorithms for building models of TM proteins. The results indicated that 

for this particular dataset of TM structures, Modeller generally outperformed the other methods. 

Gao and Stern [67] compared Modeller [58, 79] to PLOP [86-88] while using a dataset of 

TM proteins that included both α-helix bundles and β-barrels. First they evaluated model-

structures built via Modeller and PLOP on the basis of accurate pairwise alignments, constructed 

using structural alignments to eliminate alignment errors. PLOP outperformed Modeller in this 

case, probably as a result of its improved energy function. However, when those alignments were 

replaced with Clustal W-derived [71] pairwise alignments, which usually contain some alignment 

errors, Modeller and PLOP produced similar results, despite the fact that PLOP's energy function 

is considered to be superior to that of Modeller. The authors offered an explanation for this 

discrepancy by suggesting that the current sampling of conformational space by PLOP is not 

sufficient to detect the correct structural conformation. This suggestion was supported by their 

finding that in the refinement of the loop regions both methods performed poorly, again possibly 

owing to limited sampling of conformational space [67].  

Since some traits of TM proteins differ from those of soluble proteins, future research 

should probably address specific adaptations of the abovementioned packages for TM proteins. 

These might include, for example, the use of rotamers constructed from TM structures, as well as 

novel scoring functions. To the best of our knowledge, only the template-based modeling 

application of Rosetta [89] has so far been modified to include a membrane-specific force field 

[42]. This modified method was utilized, for example, in a study of voltage-gated potassium 

channels, where models derived via Rosetta's homology/de novo membrane mode were used to 

provide a mechanism for voltage-dependent gating [90].  

 Although many energy (or scoring) functions do not currently encompass membrane-

specific adaptations, Gou and Stern examined the ability of several high-quality energy functions 

to distinguish native loops in TM structures from decoys of loop conformations, generated via 

molecular dynamics. This analysis included, inter alia, the energy functions implanted in 

Modeller [58, 79], Rosetta [91, 92], PLOP [86-88] and the DFIRE potential [93]. The results 

indicated that some of the examined energy functions can reliably discriminate the native loop 

from the decoy conformations. Moreover, all but one energy function successfully ranked the 

energy of the entire TM structure lower than those of decoy models produced by homology 
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modeling. These findings raise hopes for the future implementation of energy functions in the 

refinement of TM models, possibly in parallel with the improvement of sampling in 

conformational space.  

 

17.2.5 Useful tips for TM comparative modeling 

• It is useful to evaluate the topology of the TM protein. This prediction might come in handy 

for template identification and/or query-template alignment. 

• Identification of a common origin can indicate a shared fold between two TM proteins. When 

sequences diverge, however, this functional relationship is not always easy to detect. 

• Both simple and advanced similarity searches can be helpful in the identification and 

alignment of possible templates, especially meta-servers that combine methods such as fold-

recognition and membrane-topology predictions. 

• When the similarity between query and template sequences is low, alignment accuracy might 

be improved by combining state-of-the-art bioinformatical tools with experimental data.  

• It is sometimes useful to obtain and evaluate a number of models built using different 

alignments or templates until the best model or models are found. 

 

17.3  Experimental data fitting 

In contrast to the section on comparative modeling, here we describe a computational approach 

that does not rely on the existence of a high-resolution structure of a similar protein. Instead, 

other types of available data can be exploited as constraints in order to produce a model-structure 

[7, 36]. Essential data for this purpose might come from low-resolution structures (e.g. cryo-EM 

maps) and from mutagenesis studies. The former have been shown to produce more accurate 

models, and will be addressed here more thoroughly. It should be noted that only a few TM 

model-structures have been obtained by experimental data fitting (e.g. [94-98]). This is mainly 

because of a lack of the needed preliminary data, but might also result from a rather complicated 

modeling process, which requires manual intervention and specialized expertise. Nevertheless, 

the models obtained so far have raised considerable interest. As more experimental data emerge, 

especially cryo-EM maps of eukaryotic TM proteins, this approach is likely to become much 

more relevant and easier to use.  
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17.3.1 Starting from electron-density maps at intermediate resolution 

Cryo-EM maps occasionally provide an intermediate-resolution image of the protein structure, 

with an in-plane resolution of 5Å–10Å but a much lower resolution along the membrane normal. 

Owing to the low resolution, such maps cannot reveal the exact features of TM-protein structures. 

In the case of α-helical TM proteins, they cannot even be used to assign the TM segments to the 

map helices, not to mention the coordinates of the amino acids of the TM helices in 3D space. 

Nevertheless, the maps provide important data concerning the number, tilt, and overall location of 

the TM helices in the structure. 

Figure 4. Predicting TM 

models from cryo-EM maps 

[7]. Step 1. Locations of TM 
helices, and specifically of their 
principal axes, are derived. Step 
2. Using computational tools 
and biochemical data, the TM 
segments in the sequence are 
assigned to the helical rods in 
the density map. The topology 
of the TM protein in the map is 
also determined. Step 3. To correctly rotate each helix around its principal axis, additional data from 
phylogenetic analysis, physicochemical properties and/or force fields can be exploited. A Cα-trace model is 
generated. Side chains can be added to obtain a full-atom model. Step 4. Data that were not employed for 
model building can be used for validation. The model can then be refined by reviewing the preceding 
modeling steps. In addition, the model-structure can be used to design mutagenesis experiments and 
undergo subsequent refinement on the basis of the results.  
 

For production of a molecular model from a cryo-EM map, additional data must be 

incorporated for the various modeling steps [94, 99, 100]. The overall modeling process is 

depicted by the flowchart in Figure 4 [7, 36]. First, spatial locations of the helices are obtained 

from an available intermediate-resolution cryo-EM map. Using the map, the principal axes of the 

helices can be detected and extracted. Next, TM segments in the protein sequence are assigned to 

the helical density rods, usually by employing both biochemical data and computational 

approaches. TM helices, corresponding to the TM-sequence segments, are then constructed using 

the principal axes. During this step, their register along the axes must be determined. Additional 

sources of data, such as evolutionary conservation and physicochemical properties of the protein 

sequence, are subsequently exploited to orient the helices around their principal axes. The result 

is a Cα-trace model-structure, i.e., the predicted location of the Cα atoms of the TM domain. The 

backbone atoms and the side chains of the residues can then be reconstructed in order to generate 

a full atom model of the TM protein. Finally, the model should be validated, typically via 
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experimental data that were not used to build the model (described in section 17.4). The results of 

the validation process can then be utilized for model refinement. Details of each step of this 

modeling process are addressed in the following sections.   

 

17.3.1.1 Helix assignment and membrane topology  

Before modeling is begun, the TM segments in the protein sequence must be identified and the 

topology of the protein in the membrane determined, as described above. These features are 

essential for TM-model building, but in most cases it is not easy to predict them with confidence, 

especially the precise helices boundaries. Thus, it is best to rely, as much as possible, on 

experimental data. 

For n helices, the number of possibilities for assigning the TM segments detected in the 

protein's sequence to the helices in the map is n!. Adding the two possible membrane orientations 

(the cytoplasmic- and the extracellular-facing sides of the cryo-EM map) in relation to the 

protein's topology, the number of possible models is 2 × n!. This implies that the crucial step of 

helix assignment and selection of the membrane orientation is extremely complicated even for 

TM proteins of moderate size; a TM protein with 4 helices, for example, will have 48 

combinations.  

An attempt was made to develop a graph-theory approach for assigning TM helices and 

predicting topology based on the lengths of the loops connecting the helices [101]. The method 

worked well for short loops of up to 7 residues, but the accuracy of prediction depends strongly 

on exact determination of the boundaries of the TM helices, which is usually not available. Thus, 

there is no generally applicable way to determine the helix assignment and topology of a TM 

protein using a single automatic computational tool. The problem may occasionally be solved by 

combining manual analysis of biochemical data with use of the available computational tools. As 

in the modeling of the EmrE multidrug transporter [95], considerations from phylogenetic 

analysis, hydrophobicity, and experimental data might also be useful.  

Generally speaking, the TM helices detected in the map can be divided into two groups: 

(a) core helices, surrounded by other TM helices in the bundle, and (b) peripheral helices, which 

are in contact with the core, but also have at least one lipid-exposed face. Owing to dissimilar 

evolutionary pressures, both the hydrophobicity and the evolutionary conservation patterns of the 

two types of helices are quite distinct. Relying on these differences of TM helices, Adamian and 
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Liang developed an automatic method to identify core TM helices, which are less accessible to 

the lipid membrane [102]. This method can help reduce the number of possibilities for helix 

assignment. Another useful observation for this modeling step is that interacting residues from 

neighboring TM helices might evolve cooperatively [96, 103]. Hence, detection of co-evolving 

positions by phylogenetic analysis (e.g. [103, 104]) can help guide the assignment of interacting 

TM-helix pairs. Experimental data such as distance constraints, site-directed mutagenesis, and 

accessibility assays can also be used. 

The complexity of this step is best demonstrated by the example of the gap junction Cα-

model, produced based on a cryo-EM map [96]. When a crystal structure (of a homologous 

protein) became available, it became clear that the helix assignment that was utilized for model-

building was incorrect; only one of the four TM helices of each subunit in the homo-hexamer was 

assigned correctly [105]. The erroneous assignment was based on mutagenesis data that 

apparently was interpreted wrongly [106].  

 

17.3.1.2 Helix building and rotation 

An intermediate-resolution map for producing a model-structure of a TM protein was first 

employed by Baldwin and co-workers, who constructed a Cα-trace model of vertebrate rhodopsin 

[97]. The model was generated from a structure at 7Å resolution in the membrane plane using 

constraints derived from MSA and biochemical data. When the structure was later determined at 

high resolution by X-ray crystallography, the orientations of TM helices in the model-structure 

were found to be quite accurate (3.2Å RMSD). Most of the variation was attributed to difficulties 

encountered in the precise modeling of two kinked helices [7]. 

Expanding on this pioneering approach, Fleishman and co-workers developed an 

automatic method for TM-model prediction based essentially on evolutionary conservation 

analysis [100]. For predicting the orientation of each helix, the algorithm included a scoring 

function that favored the burial of conserved (and charged) residues in the protein core, as well as 

the exposure of variable amino acids to the lipid membrane. This method, in which only the Cα 

atoms of the TM domain were constructed, was later applied to predict the structure of the gap-

junction [96] and the EmrE multidrug transporter [95]. The crystal structure of EmrE, determined 

a few months later, was markedly similar to the model structure, with an RMSD value of 1.4Å for 

the core region [107] (and of 3.52 Å for the entire TM domain, Figure 5).  
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Figure 5. Model vs. crystal structure of EmrE. A model of the EmrE homodimer (blue) was derived 
using a cryo-EM map and the computational approach of Fleishman and co-workers [95]. The crystal 
structure of EmrE (red) was solved later [107]. The model and structure are aligned and viewed from the 
side (left) and top (right). The 3D location of specific Cα atoms (marked as spheres on one monomer of the 
model and structure) demonstrate the similarity between the model and native structure.  

Beuming and Weinstein proposed a similar method [94], in which helix orientations are 

selected by employing both evolutionary conservation and a knowledge-based scale of the 

propensities of the 20 amino acids to be exposed to lipids. In addition to the Cα atoms, the 

backbones and side chains of residues are also constructed, and this is followed by structure 

minimization and some manual adjustment. The result is a full-atom model. This method was 

used to predict a molecular model of the bacterial oxalate transporter OxlT, using its electron 

density map of 6.5Å resolution in the membrane plane. The model was in agreement with cross-

linking experiments and data concerning functional residues [94].  

The most recent work in this field was done by Kovacs et al., who presented a new 

method [99] in which helix orientations are determined by minimizing an energy function that 

takes into account van der Waals interactions, electrostatics, hydrogen bonding, and torsional and 

density correlation terms. Side chains are also predicted. The best conformations are then energy-

minimized by a complex procedure in which atoms of the helical backbone are restrained to fit 

the observed cryo-EM map densities. This minimization step also relies on a solvent-accessibility 

grid map of the density rods. It should be noted that in constructing this accessibility map the 

membrane boundaries must be selected within the cryo-EM map. Correct prediction of these 

boundaries is not a simple task, and deviations from the real (unknown) boundaries can affect the 

model-structure. Another limitation of the approach is that because of the complicated energy 

calculations required for an all-atom representation, it is feasible only for TM proteins of 

moderate size (up to 4 helices per symmetric subunit). The approach worked well in three test-

cases, but has not yet been used for de novo predictions.  
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 Overall, several different methods are available for modeling the TM domains of α-

helical proteins employing restraints derived from electron-density maps of sufficient resolution. 

So far the starting point has always been a cryo-EM map, but maps from X-ray crystallography 

experiments at intermediate resolution can be used as well. Each of the above methods was 

developed and tested on only a small number of cases. Until the performance of all methods is 

examined by means of a large-scale assessment of known structures, their efficacies cannot be 

determined. In particular, it would be interesting to know whether the addition of side chains 

increases or decreases the accuracy. It may well be that each method is suitable only for certain 

specific cases. When constructing new structural models, therefore, it might be advisable to 

examine several potential models each produced by various different methods. The models can 

then be inspected on the basis of, for example, reliable experimental data along with other 

evaluation procedures (described in section 17.4 below). 

 

17.3.2 Modeling based on biochemical and biophysical data  

Other computational approaches aimed at addressing cases for which there were no available 

structural data. These approaches have employed biochemical and biophysical data, obtained for 

example from site-directed mutagenesis and chemical cross-linking, as the only constraints on the 

protein structure. Because these data are difficult to interpret in an unequivocal manner, this 

approach is inherently less reliable than modeling based on intermediate resolution structure from 

cryo-EM maps, as described above. In particular, the results of mutagenesis often represent 

phenomena that are associated with more than one conformation of the TM protein, and the 

observed phenotypes of a mutation might be indicative of allosteric effects.  

Sale and co-workers [108] developed an automatic method for TM-structure prediction 

based on distance restraints obtained from experimental assays such as chemical cross-linking, 

nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) or fluorescence 

resonance energy transfer (FRET). A search of the conformational space for a TM model-

structure that is compatible with the available distance restraints is followed by optimization 

using Monte Carlo simulated annealing. The optimization samples models that correspond well 

both with the experimental restraints and with knowledge-based structural parameters derived 

from a dataset of known TM structures. Although this approach produced an accurate model-

structure of the 7 TM helices of bovine rhodoposin (RMSD of 3.2Å) [108], it has yet to be 

applied for the prediction of novel TM-protein structures.  
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The bacterial lactose permease (also referred to as lacY), a galactosidase transporter, is 

arguably the most extensively studied TM protein to date. This transporter was examined by 

means of various experimental approaches, including systematic site-directed mutagenesis, 

double-cysteine mutants, thiol cross-linking, engineered Mn(II) binding sites, N-ethylmaleimide 

(NEM) alkylation of single cysteine mutants, site-directed EPR, and discontinuous mAb epitope 

mapping [109, 110]. The accumulated experimental data related to each position in the 12 TM 

helices of lacY, comprising 417 residues. By utilizing helical backbone restraints and 99 long-

range restraints derived from thiol cross-linking and engineered Mn(II) binding sites, Sorgen et al. 

obtained a single cluster of models for lacY with small deviations from one another [98]. They 

achieved this using an algorithm based on torsion-angle dynamics-simulated annealing, which 

was initially developed and utilized in NMR structure determination [111]. 

Figure 6. Comparison of the lacY 
model, produced via experimental 
constraints, and the solved crystal 
structure. In both panels the 
cytoplasmic side points downward. 
The lacY crystal structure (panel A) 
[112] and computational model 
(panel B) [98] are colored by 
rainbow. Although the overall fold 
and helix organization are quite 
distinct, there are regions of 
similarity, especially between the 
helices that contribute to the 
cytoplasmic-facing pore.  

The crystal structure of lacY was later determined [112], making it possible to evaluate 

the effectiveness of this modeling approach. Comparison between the model and the native 

structure showed that various local arrangements of functional residues, such as sugar- and 

proton- binding residues, were fairly accurate. However, the overall architecture of the model and 

its structure were not superimposable (Figure 6) [7]. Given the crystal structure, it was possible to 

examine the experimentally measured distances that were used for modeling. While the distances 

on the periplasmic side of the crystal structure were in good agreement with the experimental 

data, many of the distances on the cytoplasmic side were underestimated. The distances obtained 

for the cytoplasmic side probably corresponded to the periplasmic-facing conformation or other 

conformational sub-states, and therefore did not agree with the crystal structure, which was 

solved in an inward-facing conformation [113]. The fact that the experimental data probably 

reflect different conformations might account for the discrepancies between the model and the 

structure. Overall, this case study demonstrated the difficulty of producing an accurate model 
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when the experimental data do not account for a single structural conformation. Obviously such 

"monochromatic" data are usually not available. 

Prediction of the dimeric structure of the E. coli Na+/H+ antiporter NhaA is another 

example of constraint-based modeling of a TM protein. Although the protein in its physiological 

form is a dimer [114, 115], its crystal structure depicts only the monomer; the physiological 

dimeric contacts are not exhibited [33]. To obtain the dimeric structure, two NhaA monomeric 

structures were considered as rigid bodies. Nine long-range EPR distance measurements were 

then used as constraints to build a dimer by docking the two monomers [116]. The model-dimer 

showed good agreement with the interfacial domain observed in cryo-EM 2D crystals, which 

exhibited the electron density of the NhaA dimer. The suggested dimeric interface was further 

supported by chemical cross-linking [115] and deletion assays [117]. Although this is not a 

classical example of the use of experimental constraints to model a helical TM protein, it shows 

how the membrane plane and intrinsic symmetry reduces the degrees of freedom of the modeling 

process. Thus, even a small number of distance constraints was sufficient for inferring the 

oligomeric conformation.  

 

17.3.3 Tips for modeling by experimental data fitting 

• A cryo-EM map is a good starting point. When the map’s resolution is high enough to 

detect the TM helices, at least Cα-trace models of TM proteins can be produced.  

• Because helix assignment is a crucial and complicated step, several data sources are 

usually needed in order to correctly assign the TM sequence segments to the helix density 

contours in the map. 

• Evolutionary conservation, physicochemical features and force fields are useful for 

rotating the TM helices around their principal axes. 

• The use of empirical data to build models of TM proteins is complicated because:  (a) the 

protein often undergoes conformational changes, and data relating to the effects of 

mutations might reflect a mixture of these conformations. (b) Mutagenesis data might 

reflect both direct interactions and remote (allosteric) effects.  

 

17.4  Quality assessment 

Computational methods of  model evaluation are usually referred to as Model Quality Assessment 

Programs (MQAPs) [38, 118]. As reviewed in chapters 15 and 16, numerous computational 
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methods have already been developed for local and global assessments of model-structures, 

indicating the importance of this step in protein modeling (e.g., [119-124]). These are all general 

methods for model evaluation; to the best of our knowledge, specialized MQAPs for TM proteins 

are currently not available. Therefore, when these general evaluation tools are applied to TM 

model-structures, the results of the assessment should be viewed with caution. A good strategy 

for assessment of TM models predicted via homology modeling might be to apply the MQAPs to 

both model and template. The results of the template could be used thereafter as a reference point 

for the result of the model-structure. It is anticipated that in the future, existing approaches will be 

modified to better comply with the distinct traits of TM proteins. Alternatively, assessment of the 

performance of state-of-the-art MQAPs on TM structures might reveal that current methods are 

also adequate for evaluating this class of proteins.  

The validity of the TM model-structure can be further assessed through an examination of 

its generic characteristics. These might comprise only external features, defined here as protein 

characteristics that were not accounted for during model building. A recent investigation of the 

local accuracy of TM models that were produced via homology modeling demonstrated that even 

when the membrane-embedded helices of the query and the template sequences are structurally 

similar, the extra-membrane regions that connect them might deviate in both sequence and length 

[29]. In another study it was demonstrated that refinement procedures cannot clearly improve the 

loop regions in TM proteins [67]. Thus, loops in TM model-structures should be considered a 

priori as regions of questionable accuracy, as in the modeling of soluble proteins.  

 

17.4.1 Compatibility of the model with general characteristics of TM proteins 

In section 17.1.1 we presented some of the general features that characterize α-helical TM 

proteins. These distinct traits were observed by analysis of TM structures that were solved 

experimentally. Those traits could therefore be utilized to assess the accuracy of TM model-

structures, provided that they were not used in building the model. When model-structures are 

assessed in the future, it might be helpful to exploit the recent discovery that the structural 

determinants of TM helices appear to incorporate five specific types of interhelical interactions 

[31]. Accordingly, the expectation would be that trustworthy models will feature these 

interactions, and that wrong models will not. When erroneous X-ray crystal structures were 

retracted from the PDB, they were indeed found to include only very few interactions of that sort, 

which would not suffice to keep the fold intact.  
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17.4.1.1 The "positive-inside" rule and the "aromatic-belt" 

The "positive-inside" rule [21] can be used to examine the overall architecture of a TM model-

structure, as the distribution of lysines and arginines in the extra-membrane regions of the model-

structure can serve as an indication of whether the TM segments and extra-membrane regions are 

correctly approximated. Moreover, this rule can point out cases where the template selection or 

the query-template alignments are entirely erroneous. Clearly however, this will not be of help in 

determining the exact TM boundaries, inter-helical structural arrangement, or packing. In 

addition, TM-protein structures frequently feature an "aromatic belt" near the borders of the 

hydrocarbon core region [17]. As with the "positive-inside" rule, this feature can also be 

evaluated to assess the overall topology of the TM model-structure, but will not help to validate 

its precise molecular details. 

It should be mentioned that both of the above features are implemented in many of the 

advanced methods for predicting the membrane topology from the sequence. If such methods 

were used for building the model, it is fairly obvious that the model will inevitably be compatible 

with both thumb-rules. 

 

17.4.1.2 Hydrophobicity of lipid-facing residues 

Based on knowledge derived from available TM structures, most of the lipid-exposed residues of 

the TM model-structure are expected to be hydrophobic [17]. In some of the methods for 

predicting TM structure by the use of experimental constraints, this trait is exploited to produce 

the 3D model (e.g. [94, 100]). In comparative modeling, this trait can be addressed indirectly 

when integrating the results of TM-helix prediction for correct alignment of the query-template 

sequences.  

Such examination is likely to be useful for validation provided that the nature of the lipid-

exposed residues was not taken into consideration during model building. To ensure that this 

requirement is met, the lipid-exposed positions in the TM model-structure should be reviewed 

using a hydrophobicity scale (e.g. [20]). Mapping of the scale on the residues of the TM model-

structure reveals its degree of correspondence with the structure's expected hydrophobicity 

pattern. It should be noted that this evaluation process is useful for peripheral helices, in which 

residues are exposed to the membrane, but not for helices that are buried in the TM core. If, on 
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examining a model generated by comparative modeling, a peripheral helix is found in which polar 

residues face the membrane while hydrophobic residues face the protein core, this might indicate 

that the pairwise alignment of the query-template in this region needs to be refined.  During this 

evaluation process, moreover, the physiological oligomeric state should also be taken into 

account. Regions that appear to be lipid-exposed might actually participate in inter-protein 

interfaces within the oligomeric structure of the TM protein. These might include polar residues.  

 

17.4.1.3 Prolines and kinks  

Cordes and co-workers have demonstrated that proline residues are more abundant at the ends of 

TM helices [22]. Proline residues interrupt helical segments and are also commonly found in 

irregular regions of TM helices [10, 22, 23]. Furthermore, inspection of hinge regions of TM 

proteins revealed that 60% of the prolines comprise the hinge itself or are located up to 4 residues 

(approximately one turn) before it [22]. Another study showed that positions in which the MSA 

exhibits a high content of prolines are likely to correspond to proline-induced kinked or otherwise 

disrupted regions [27]. Taking all of the above into consideration, it is interesting to examine the 

predicted location of proline residues and the positions in which the MSA shows an abundance of 

proline. Many of these positions, especially the conserved ones, would be expected to cluster at 

the ends of the helix or in the vicinity of helix irregularities in the model-structure. This can 

provide a rough validation for the TM model, especially with respect to the assignment of 

irregular TM helices. 

 

17.4.2 Evolutionary conservation profile 

Proteins are usually subjected to evolutionary pressure in areas of structural or functional 

importance. A number of studies have shown that α-helical TM proteins exhibit a distinct 

conservation pattern in which the protein core is conserved while the loops and lipid-exposed 

residues are rather variable [12, 36, 94, 100, 102, 125-127]. Thus, peripheral helices frequently 

present distinct variable and conserved helical faces, with the variable faces exposed to the 

membrane. Because the core region contributes to structural stability and function, it is typically 

under stronger evolutionary pressure, and would accordingly generally exhibit a high level of 

conservation. This evolutionary conservation pattern has been demonstrated for various 

membrane proteins (for example, bacteriorhodopsin [7] and the sodium/proton transporter NhaA 

of E. coli [62, 128]). By contrast, mapping of evolutionary conservation analysis on erroneous 
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TM structures, such as two of the structures of the EmrE transporter [129, 130], does not fit this 

paradigmatic pattern [36]. The empirical principle can also be demonstrated by a comparison of 

the conservation pattern of another retracted structure, the crystal structure of the ATP-binding 

cassette multidrug transporter MsbA [131, 132], to that of the correct structure of homologous 

sav1866 [133]. The conserved residues of sav1866 are evidently buried in the protein core while 

variable residues face the lipids, as anticipated (Figure 7B). However, the evolutionary profile of 

the retracted structure of MSbA shows a different pattern: some conserved residues face the lipids 

and some variable residues are buried in the core (Figure 7A). In both proteins, however, the 

cytoplasmic ends are highly conserved and form contacts with the cytoplasmic domains.   

Figure 7. Conservation analysis of erroneous 

and correct structures of ABC transporters. 
The retracted structure of MsbA [131] (panel 
A) and the structure of sav1866 [133] (panel B) 
are colored according to conservation, using 
the ConSurf color scale [134]. Highly 
conserved residues, receiving grades of 8 or 9, 
along with the outermost variable (grades of 1 
or 2) are shown as spheres. The two upper 
panels show a side view of the two proteins 
with their cytoplasmic sides facing down. 
Approximated membrane boundaries are 
shown in grey. The nucleotide-binding 
cytoplasmic domains of both MsbA and 
sav1866 were omitted for clarity. The two 
lower panels show a top (and closer) view of 
the same proteins.  

 
Incorporating this notion, mapping of evolutionary conservation analysis on the model is 

highly effective in assessing putative structural models. The examination is applicable only if 

conservation was not taken into account during generation of the model. The approach was 

recently utilized, for example, to validate models produced for the SERT transporter [60] and the 

NHE1 Na+/H+ exchanger [62]. In both studies, conservation scores were calculated via the 

ConSurf webserver (http://consurf.tau.ac.il [134]). This evaluation procedure can still only be 

performed manually. Future developments are likely to include its automatization, assigning a 

score that can then be utilized to compare the quality of different models.  

In the case of comparative modeling, examination of the evolutionary conservation 

analysis mapped on the model-structure can indicate if the pairwise alignment or the template 

selection procedures should be revised. For example, a common error such as a single shift in the 

alignment of a TM helix might result in the placement of conserved residues towards the lipid 
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while variable residues are buried. Such inaccuracy is easily visible from the conservation 

analysis, but might be difficult to decipher using other evaluation tools. Overall, mapping of the 

evolutionary conservation analysis on TM model-structures can be considered a highly effective 

method of evaluation. Close examination of this analysis can allow large or small errors to be 

detected in the model-structure. This will help not only in the assessment of the TM model's local 

and global quality, but also in the refinement of problematic regions. 

It is noteworthy that water-soluble proteins also exhibit similar evolutionary profiles. 

That is, their interior is more conserved than their exterior. Indeed, this property has been used to 

evaluate the quality of structural models [135-137].  

 

17.4.3 Correspondence with experimental and clinical data  

As already mentioned, some types of experimental data provide constraints that are useful in 

predicting TM structures, and if not used for model building, these data can be utilized for 

validation. Generally speaking, residues in which mutations disrupt a protein’s function would 

normally be found in the TM-protein core, and would typically be of structural or functional 

importance. They might, for example, contribute to stabilization through inter-helical interfaces 

or to a function such as direct binding of a substrate. By contrast, most of the positions that are 

less sensitive to mutations are typically exposed to the lipid, owing to the fact that membrane-

facing positions are in general not directly involved in structural stabilization or in function. This 

paradigm was well exemplified by mapping of elaborate mutagenesis data on the model-structure 

of the Na+/H+ exchanger NHE1 [62].  

The above general logic can be applied on examination of the model-predicted locations 

of polymorphisms and disease-causing mutations. The former are predicted to reside on 

peripheral regions of the TM protein, whereas the latter typically comprise the core. Besides site-

directed mutagenesis and clinical data, other types of empirical data are also helpful in validating 

the structure of TM proteins. These include, for example, accessibility assays (employed, for 

instance, to evaluate the EmrE model-structure [95]) and distance assessments using chemical 

cross-linking (used, for example, in assessing the model of CFTR [63]) or other measurements. 

Nevertheless, it is worth re-emphasizing that the experimental data should be treated with 

caution, especially with regard to intrinsic conformational changes. This was well illustrated in a 

recent study by Forrest and co-workers of the Aquifex aeolicus leucine transporter (aaLeuT), 
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whose structure had been previously solved in its extra-cellular-facing conformation [138]. By 

exploiting the pseudo-symmetry observed in the crystal structure, they produced a model of the 

cytoplasmic-facing conformation of the aaLeuT transporter [139]. To assess their cytoplasmic-

facing model-structure they used two inhibitors of the homologous SERT transporter, each of 

which stabilizes a distinct structural conformation (inward or outward). Accessibility 

measurements obtained for the inhibitor-stabilized inward state of the SERT transporter provided 

experimental support for the cytoplasmic-facing model of the aaLeuT transporter. These results 

demonstrated that when the available data correspond to a single conformational state of a TM 

protein, it is possible to obtain accurate validation of its model-structure. 

 

17.4.4 Tips for evaluation  

• MQAPs should be used with caution as their performance on TM proteins has yet to be 

examined. 

• It is helpful to inspect the predicted location of specific amino-acid types that exhibit 

special traits in TM structures.  

• Membrane-exposed residues usually exhibit marked hydrophobicity. Thus, the presence 

of too many polar residues in lipid-facing regions, especially if the residues are charged, 

might be indicative of an inadequate model-structure. 

• Evolutionary conservation analysis is a useful tool for TM-model assessment and 

refinement. It is important to bear in mind that such analysis is profoundly affected by the 

quality of the input MSA.  

• TM-model validation via experimental data is extremely helpful. Data that are reliable 

and easy to interpret offer the best available external assessment of TM model-structures.  

 

Acknowledgments 

This work was supported by grant 611/07 from the Israel Science Foundation to N.B-T. M.S. was 

supported by the Edmond J. Safra Bioinformatics program at Tel-Aviv University. 

 

References 

1. Liu, J. and B. Rost, Comparing function and structure between entire proteomes. Protein Sci, 
2001. 10(10): p. 1970-9. 

2. Kahsay, R.Y., G. Gao, and L. Liao, An improved hidden Markov model for transmembrane 

protein detection and topology prediction and its applications to complete genomes. 
Bioinformatics, 2005. 21(9): p. 1853-8. 



Wiley STM / Protein Structure Prediction: Methods and Algorithms 

Chapter 17 / Maya Schushan & Nir Ben-Tal /  

page 30

3. Mitaku, S., et al., Proportion of membrane proteins in proteomes of 15 single-cell organisms 

analyzed by the SOSUI prediction system. Biophys Chem, 1999. 82(2-3): p. 165-71. 
4. Lundstrom, K., Structural genomics and drug discovery. J Cell Mol Med, 2007. 11(2): p. 224-38. 
5. White, S.H., The progress of membrane protein structure determination. Protein Sci, 2004. 13(7): 

p. 1948-9. 
6. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42. 
7. Fleishman, S.J., V.M. Unger, and N. Ben-Tal, Transmembrane protein structures without X-rays. 

Trends Biochem Sci, 2006. 31(2): p. 106-13. 
8. Hurwitz, N., M. Pellegrini-Calace, and D.T. Jones, Towards genome-scale structure prediction for 

transmembrane proteins. Philos Trans R Soc Lond B Biol Sci, 2006. 361(1467): p. 465-75. 
9. Punta, M., et al., Membrane protein prediction methods. Methods, 2007. 41(4): p. 460-74. 
10. Bowie, J.U., Solving the membrane protein folding problem. Nature, 2005. 438(7068): p. 581-9. 
11. Liu, Y., D.M. Engelman, and M. Gerstein, Genomic analysis of membrane protein families: 

abundance and conserved motifs. Genome Biol, 2002. 3(10): p. research0054.0051-00.54.0012. 
12. Donnelly, D., et al., Modeling alpha-helical transmembrane domains: the calculation and use of 

substitution tables for lipid-facing residues. Protein Sci, 1993. 2(1): p. 55-70. 
13. Jones, D.T., W.R. Taylor, and J.M. Thornton, A mutation data matrix for transmembrane proteins. 

FEBS Lett, 1994. 339(3): p. 269-75. 
14. Blondelle, S.E., et al., Secondary structure induction in aqueous vs membrane-like environments. 

Biopolymers, 1997. 42(4): p. 489-98. 
15. Wallin, E., et al., Architecture of helix bundle membrane proteins: an analysis of cytochrome c 

oxidase from bovine mitochondria. Protein Sci, 1997. 6(4): p. 808-15. 
16. Ubarretxena-Belandia, I. and D.M. Engelman, Helical membrane proteins: diversity of functions 

in the context of simple architecture. Curr Opin Struct Biol, 2001. 11(3): p. 370-6. 
17. Ulmschneider, M.B., M.S. Sansom, and A. Di Nola, Properties of integral membrane protein 

structures: derivation of an implicit membrane potential. Proteins, 2005. 59(2): p. 252-65. 
18. Tourasse, N.J. and W.H. Li, Selective constraints, amino acid composition, and the rate of protein 

evolution. Mol Biol Evol, 2000. 17(4): p. 656-64. 
19. von Heijne, G., Membrane-protein topology. Nat Rev Mol Cell Biol, 2006. 7(12): p. 909-18. 
20. Kessel, A. and N. Ben-Tal, Free energy determinants of peptide association with lipid bilayers. 

Current Topics in Membranes, 2002. 52: p. 205-253. 
21. Heijne, G.V., The distribution of positively charged residues in bacterial inner membrane proteins 

correlates with the trans-membrane topology. EMBO J, 1986. 5(11): p. 3021-27. 
22. Cordes, F.S., J.N. Bright, and M.S. Sansom, Proline-induced distortions of transmembrane 

helices. J Mol Biol, 2002. 323(5): p. 951-60. 
23. Barlow, D.J. and J.M. Thornton, Helix geometry in proteins. J Mol Biol, 1988. 201(3): p. 601-19. 
24. Tieleman, D.P., et al., Proline-induced hinges in transmembrane helices: possible roles in ion 

channel gating. Proteins, 2001. 44(2): p. 63-72. 
25. Lu, H., T. Marti, and P.J. Booth, Proline residues in transmembrane alpha helices affect the 

folding of bacteriorhodopsin. J Mol Biol, 2001. 308(2): p. 437-46. 
26. Brandl, C.J. and C.M. Deber, Hypothesis about the function of membrane-buried proline residues 

in transport proteins. Proc Natl Acad Sci U S A, 1986. 83(4): p. 917-21. 
27. Yohannan, S., et al., The evolution of transmembrane helix kinks and the structural diversity of G 

protein-coupled receptors. Proc Natl Acad Sci U S A, 2004. 101(4): p. 959-63. 
28. Wallace, B.A., M. Cascio, and D.L. Mielke, Evaluation of methods for the prediction of 

membrane protein secondary structures. Proc Natl Acad Sci U S A, 1986. 83(24): p. 9423-7. 
29. Forrest, L.R., C.L. Tang, and B. Honig, On the accuracy of homology modeling and sequence 

alignment methods applied to membrane proteins. Biophys J, 2006. 91(2): p. 508-17. 
30. Li, S.C. and C.M. Deber, A measure of helical propensity for amino acids in membrane 

environments. Nat Struct Biol, 1994. 1(6): p. 368-73. 
31. Harrington, S.E. and N. Ben-Tal, Structural determinants of transmembrane helical proteins. 

Structure, 2009. 17(8): p. 1092-1103. 
32. Grigorieff, N., et al., Electron-crystallographic refinement of the structure of bacteriorhodopsin. J 

Mol Biol, 1996. 259(3): p. 393-421. 



Wiley STM / Protein Structure Prediction: Methods and Algorithms 

Chapter 17 / Maya Schushan & Nir Ben-Tal /  

page 31

33. Hunte, C., et al., Structure of a Na+/H+ antiporter and insights into mechanism of action and 

regulation by pH. Nature, 2005. 435(7046): p. 1197-202. 
34. Fu, D., et al., Structure of a glycerol-conducting channel and the basis for its selectivity. Science, 

2000. 290(5491): p. 481-6. 
35. Granseth, E., et al., Membrane protein structural biology--how far can the bugs take us? Mol 

Membr Biol, 2007. 24(5-6): p. 329-32. 
36. Fleishman, S.J. and N. Ben-Tal, Progress in structure prediction of alpha-helical membrane 

proteins. Curr Opin Struct Biol, 2006. 16(4): p. 496-504. 
37. Elofsson, A. and G. von Heijne, Membrane protein structure: prediction versus reality. Annu Rev 

Biochem, 2007. 76: p. 125-40. 
38. Zhang, Y., Progress and challenges in protein structure prediction. Curr Opin Struct Biol, 2008. 

18(3): p. 342-8. 
39. Das, R. and D. Baker, Macromolecular Modeling with Rosetta. Annual Review of Biochemistry, 

2008. 77(1): p. 363-382. 
40. Bradley, P., K.M. Misura, and D. Baker, Toward high-resolution de novo structure prediction for 

small proteins. Science, 2005. 309(5742): p. 1868-71. 
41. Yarov-Yarovoy, V., J. Schonbrun, and D. Baker, Multipass membrane protein structure prediction 

using Rosetta. Proteins, 2006. 62(4): p. 1010-25. 
42. Barth, P., J. Schonbrun, and D. Baker, Toward high-resolution prediction and design of 

transmembrane helical protein structures. Proceedings of the National Academy of Sciences, 
2007. 104(40): p. 15682-15687. 

43. Barth, P., B. Wallner, and D. Baker, Prediction of membrane protein structures with complex 

topologies using limited constraints. Proceedings of the National Academy of Sciences, 2009. 
106(5): p. 1409-1414. 

44. Zhang, Y., M.E. Devries, and J. Skolnick, Structure modeling of all identified G protein-coupled 

receptors in the human genome. PLoS Comput Biol, 2006. 2(2): p. e13. 
45. Cherezov, V., et al., High-resolution crystal structure of an engineered human beta2-adrenergic G 

protein-coupled receptor. Science, 2007. 318(5854): p. 1258-65. 
46. Takeda, S., et al., Identification of G protein-coupled receptor genes from the human genome 

sequence. FEBS Lett, 2002. 520(1-3): p. 97-101. 
47. Pierce, K.L., R.T. Premont, and R.J. Lefkowitz, Seven-transmembrane receptors. Nat Rev Mol 

Cell Biol, 2002. 3(9): p. 639-50. 
48. Lundstrom, K., Latest development in drug discovery on G protein-coupled receptors. Curr 

Protein Pept Sci, 2006. 7(5): p. 465-70. 
49. Patny, A., P.V. Desai, and M.A. Avery, Homology modeling of G-protein-coupled receptors and 

implications in drug design. Curr Med Chem, 2006. 13(14): p. 1667-91. 
50. Shacham, S., et al., PREDICT modeling and in-silico screening for G-protein coupled receptors. 

Proteins, 2004. 57(1): p. 51-86. 
51. Trabanino, R.J., et al., First principles predictions of the structure and function of g-protein-

coupled receptors: validation for bovine rhodopsin. Biophys J, 2004. 86(4): p. 1904-21. 
52. Fanelli, F. and P.G. De Benedetti, Computational modeling approaches to structure-function 

analysis of G protein-coupled receptors. Chem Rev, 2005. 105(9): p. 3297-351. 
53. Oliveira, L., et al., Heavier-than-air flying machines are impossible. FEBS Lett, 2004. 564(3): p. 

269-73. 
54. Becker, O.M., et al., Modeling the 3D structure of GPCRs: advances and application to drug 

discovery. Curr Opin Drug Discov Devel, 2003. 6(3): p. 353-61. 
55. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. 

Curr Opin Struct Biol, 2005. 15(3): p. 285-9. 
56. Ginalski, K., Comparative modeling for protein structure prediction. Curr Opin Struct Biol, 2006. 

16(2): p. 172-7. 
57. Petrey, D. and B. Honig, Protein structure prediction: inroads to biology. Mol Cell, 2005. 20(6): 

p. 811-9. 
58. Fiser, A. and A. Sali, Modeller: generation and refinement of homology-based protein structure 

models. Methods Enzymol, 2003. 374: p. 461-91. 



Wiley STM / Protein Structure Prediction: Methods and Algorithms 

Chapter 17 / Maya Schushan & Nir Ben-Tal /  

page 32

59. Oberai, A., et al., A limited universe of membrane protein families and folds. Protein Sci, 2006. 
15(7): p. 1723-34. 

60. Forrest, L.R., et al., Identification of a chloride ion binding site in Na+/Cl -dependent 

transporters. Proc Natl Acad Sci U S A, 2007. 104(31): p. 12761-6. 
61. Beuming, T., et al., A comprehensive structure-based alignment of prokaryotic and eukaryotic 

neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS 

structure and function. Mol Pharmacol, 2006. 70(5): p. 1630-42. 
62. Landau, M., et al., Model structure of the Na+/H+ exchanger 1 (NHE1): functional and clinical 

implications. J Biol Chem, 2007. 282(52): p. 37854-63. 
63. Mornon, J.P., P. Lehn, and I. Callebaut, Atomic model of human cystic fibrosis transmembrane 

conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci, 
2008. 65(16): p. 2594-612. 

64. Callebaut, I., et al., Deciphering protein sequence information through hydrophobic cluster 

analysis (HCA): current status and perspectives. Cell Mol Life Sci, 1997. 53(8): p. 621-45. 
65. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 
66. Hedman, M., et al., Improved detection of homologous membrane proteins by inclusion of 

information from topology predictions. Protein Sci, 2002. 11(3): p. 652-8. 
67. Gao, C. and H.A. Stern, Scoring function accuracy for membrane protein structure prediction. 

Proteins, 2007. 68(1): p. 67-75. 
68. Baker, D. and A. Sali, Protein structure prediction and structural genomics. Science, 2001. 

294(5540): p. 93-6. 
69. Edgar, R.C., MUSCLE: a multiple sequence alignment method with reduced time and space 

complexity. BMC Bioinformatics, 2004. 5: p. 113. 
70. Notredame, C., D.G. Higgins, and J. Heringa, T-Coffee: A novel method for fast and accurate 

multiple sequence alignment. J Mol Biol, 2000. 302(1): p. 205-17. 
71. Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity of 

progressive multiple sequence alignment through sequence weighting, position-specific gap 

penalties and weight matrix choice. Nucleic Acids Res, 1994. 22(22): p. 4673-80. 
72. Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt, A model of evolutionary change in proteins. 

Atlas of Protein Sequence and Structure., 1978. 5: p. 345–352. 
73. Henikoff, S. and J.G. Henikoff, Amino acid substitution matrices from protein blocks. Proc Natl 

Acad Sci U S A, 1992. 89(22): p. 10915-9. 
74. Ng, P.C., J.G. Henikoff, and S. Henikoff, PHAT: a transmembrane-specific substitution matrix. 

Predicted hydrophobic and transmembrane. Bioinformatics, 2000. 16(9): p. 760-6. 
75. Muller, T., S. Rahmann, and M. Rehmsmeier, Non-symmetric score matrices and the detection of 

homologous transmembrane proteins. Bioinformatics, 2001. 17(Suppl 1): p. S182-9. 
76. Shafrir, Y. and H.R. Guy, STAM: simple transmembrane alignment method. Bioinformatics, 2004. 

20(5): p. 758-69. 
77. Pirovano, W., K.A. Feenstra, and J. Heringa, PRALINETM: a strategy for improved multiple 

alignment of transmembrane proteins. Bioinformatics, 2008. 24(4): p. 492-7. 
78. Tang, C.L., et al., On the role of structural information in remote homology detection and 

sequence alignment: new methods using hybrid sequence profiles. J Mol Biol, 2003. 334(5): p. 
1043-62. 

79. Sali, A. and T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints. J 
Mol Biol, 1993. 234(3): p. 779-815. 

80. Petrey, D., et al., Using multiple structure alignments, fast model building, and energetic analysis 

in fold recognition and homology modeling. Proteins, 2003. 53(Suppl 6): p. 430-5. 
81. Reddy, C.S., et al., Homology modeling of membrane proteins: a critical assessment. Comput Biol 

Chem, 2006. 30(2): p. 120-6. 
82. Kelly, K., 3D bioinformatics and comparative protein modeling in MOE. J Chem Comp Group, 

1999. autumn ed. 
83. Dayringer, H.E., A. Tramontano, and R.J. Fletterick, Interactive program for visualization and 

modelling of proteins, nucleic acids and small molecules. J Mol Graph, 1986(4): p. 82-87. 



Wiley STM / Protein Structure Prediction: Methods and Algorithms 

Chapter 17 / Maya Schushan & Nir Ben-Tal /  

page 33

84. Schwede, T., et al., SWISS-MODEL: An automated protein homology-modeling server. Nucleic 
Acids Res, 2003. 31(13): p. 3381-5. 

85. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for 

comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-23. 
86. Jacobson, M. and S. A., Comparative protein structure modeling and its applications to drug 

discovery. Annual Reports in Medicinal Chemistry, 2004. 39: p. pp 259–67. 
87. Jacobson, M.P., et al., A hierarchical approach to all-atom protein loop prediction. Proteins, 

2004. 55(2): p. 351-67. 
88. Jacobson, M.P., et al., Force Field Validation Using Protein Side Chain Prediction , Force Field 

Validation Using Protein Side Chain Prediction. Journal of Physical and Colloid Chemistry, 2002. 
106(44,): p. 11673-80. 

89. Rohl, C.A., et al., Modeling structurally variable regions in homologous proteins with rosetta. 
Proteins, 2004. 55(3): p. 656-77. 

90. Yarov-Yarovoy, V., D. Baker, and W.A. Catterall, Voltage sensor conformations in the open and 

closed states in ROSETTA structural models of K(+) channels. Proc Natl Acad Sci U S A, 2006. 
103(19): p. 7292-7. 

91. Simons, K.T., et al., Assembly of protein tertiary structures from fragments with similar local 

sequences using simulated annealing and Bayesian scoring functions. J Mol Biol, 1997. 268(1): p. 
209-25. 

92. Simons, K.T., et al., Improved recognition of native-like protein structures using a combination of 

sequence-dependent and sequence-independent features of proteins. Proteins, 1999. 34(1): p. 82-
95. 

93. Zhou, H. and Y. Zhou, Distance-scaled, finite ideal-gas reference state improves structure-derived 

potentials of mean force for structure selection and stability prediction. Protein Sci, 2002. 11(11): 
p. 2714-26. 

94. Beuming, T. and H. Weinstein, Modeling membrane proteins based on low-resolution electron 

microscopy maps: a template for the TM domains of the oxalate transporter OxlT. Protein Eng 
Des Sel, 2005. 18(3): p. 119-25. 

95. Fleishman, S.J., et al., Quasi-symmetry in the cryo-EM structure of EmrE provides the key to 

modeling its transmembrane domain. J Mol Biol, 2006. 364(1): p. 54-67. 
96. Fleishman, S.J., et al., A Calpha model for the transmembrane alpha helices of gap junction 

intercellular channels. Mol Cell, 2004. 15(6): p. 879-88. 
97. Baldwin, J.M., G.F. Schertler, and V.M. Unger, An alpha-carbon template for the transmembrane 

helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol, 1997. 272(1): p. 144-
64. 

98. Sorgen, P.L., et al., An approach to membrane protein structure without crystals. Proc Natl Acad 
Sci U S A, 2002. 99(22): p. 14037-40. 

99. Kovacs, J.A., M. Yeager, and R. Abagyan, Computational prediction of atomic structures of 

helical membrane proteins aided by EM maps. Biophys J, 2007. 93(6): p. 1950-9. 
100. Fleishman, S.J., et al., An automatic method for predicting transmembrane protein structures 

using cryo-EM and evolutionary data. Biophys J, 2004. 87(5): p. 3448-59. 
101. Enosh, A., et al., Assigning transmembrane segments to helices in intermediate-resolution 

structures. Bioinformatics, 2004. 20(Suppl 1): p. i122-9. 
102. Adamian, L. and J. Liang, Prediction of transmembrane helix orientation in polytopic membrane 

proteins. BMC Struct Biol, 2006. 6: p. 13. 
103. Fuchs, A., et al., Co-evolving residues in membrane proteins. Bioinformatics, 2007. 23(24): p. 

3312-9. 
104. Fleishman, S.J., O. Yifrach, and N. Ben-Tal, An evolutionarily conserved network of amino acids 

mediates gating in voltage-dependent potassium channels. J Mol Biol, 2004. 340(2): p. 307-18. 
105. Maeda, S., et al., Structure of the connexin 26 gap junction channel at 3.5[thinsp]A resolution. 

Nature, 2009. 458(7238): p. 597-602. 
106. Skerrett, I.M., et al., Identification of amino acid residues lining the pore of a gap junction 

channel. J. Cell Biol., 2002. 159(2): p. 349-360. 
107. Chen, Y.J., et al., X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S 

A, 2007. 104(48): p. 18999-9004. 



Wiley STM / Protein Structure Prediction: Methods and Algorithms 

Chapter 17 / Maya Schushan & Nir Ben-Tal /  

page 34

108. Sale, K., et al., Optimal bundling of transmembrane helices using sparse distance constraints. 
Protein Sci, 2004. 13(10): p. 2613-27. 

109. Kaback, H.R., M. Sahin-Toth, and A.B. Weinglass, The kamikaze approach to membrane 

transport. Nat Rev Mol Cell Biol, 2001. 2(8): p. 610-20. 
110. Kaback, H.R. and J. Wu, From membrane to molecule to the third amino acid from the left with a 

membrane transport protein. Q Rev Biophys, 1997. 30(4): p. 333-64. 
111. Stein, E.G., L.M. Rice, and A.T. Brunger, Torsion-angle molecular dynamics as a new efficient 

tool for NMR structure calculation. J Magn Reson, 1997. 124(1): p. 154-64. 
112. Abramson, J., et al., Structure and mechanism of the lactose permease of Escherichia coli. 

Science, 2003. 301(5633): p. 610-5. 
113. Abramson, J., et al., The lactose permease of Escherichia coli: overall structure, the sugar-

binding site and the alternating access model for transport. FEBS Lett, 2003. 555(1): p. 96-101. 
114. Williams, K.A., et al., Projection structure of NhaA, a secondary transporter from Escherichia 

coli, at 4.0 A resolution. EMBO J, 1999. 18(13): p. 3558-63. 
115. Gerchman, Y., et al., Oligomerization of NhaA, the Na+/H+ antiporter of Escherichia coli in the 

membrane and its functional and structural consequences. Biochemistry, 2001. 40(11): p. 3403-
12. 

116. Hilger, D., et al., High-resolution structure of a Na+/H+ antiporter dimer obtained by pulsed 

electron paramagnetic resonance distance measurements. Biophys J, 2007. 93(10): p. 3675-83. 
117. Rimon, A., T. Tzubery, and E. Padan, Monomers of the NhaA Na+/H+ antiporter of Escherichia 

coli are fully functional yet dimers are beneficial under extreme stress conditions at alkaline pH in 

the presence of Na+ or Li+. J Biol Chem, 2007. 282(37): p. 26810-21. 
118. Fischer, D., Servers for protein structure prediction. Curr Opin Struct Biol, 2006. 16(2): p. 178-

82. 
119. Fasnacht, M., J. Zhu, and B. Honig, Local quality assessment in homology models using statistical 

potentials and support vector machines. Protein Sci, 2007. 16(8): p. 1557-68. 
120. Eisenberg, D., R. Luthy, and J.U. Bowie, VERIFY3D: assessment of protein models with three-

dimensional profiles. Methods Enzymol, 1997. 277: p. 396-404. 
121. Sippl, M.J., Recognition of errors in three-dimensional structures of proteins. Proteins, 1993. 

17(4): p. 355-62. 
122. Wallner, B. and A. Elofsson, Identification of correct regions in protein models using structural, 

alignment, and consensus information. Protein Sci, 2006. 15(4): p. 900-13. 
123. Wallner, B. and A. Elofsson, Can correct protein models be identified? Protein Sci, 2003. 12(5): 

p. 1073-86. 
124. Tosatto, S.C., The victor/FRST function for model quality estimation. J Comput Biol, 2005. 

12(10): p. 1316-27. 
125. Briggs, J.A., J. Torres, and I.T. Arkin, A new method to model membrane protein structure based 

on silent amino acid substitutions. Proteins, 2001. 44(3): p. 370-5. 
126. Stevens, T.J. and I.T. Arkin, Substitution rates in alpha-helical transmembrane proteins. Protein 

Sci, 2001. 10(12): p. 2507-17. 
127. Jones, D.T., Improving the accuracy of transmembrane protein topology prediction using 

evolutionary information. Bioinformatics, 2007. 23(5): p. 538-44. 
128. Kozachkov, L., K. Herz, and E. Padan, Functional and structural interactions of the 

transmembrane domain X of NhaA, Na+/H+ antiporter of Escherichia coli, at physiological pH. 
Biochemistry, 2007. 46(9): p. 2419-30. 

129. Pornillos, O., et al., X-ray structure of the EmrE multidrug transporter in complex with a 

substrate. Science, 2005. 310(5756): p. 1950-3. 
130. Ma, C. and G. Chang, Structure of the multidrug resistance efflux transporter EmrE from 

Escherichia coli. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2852-7. 
131. Chang, G., et al., Retraction. Science, 2006. 314(5807): p. 1875. 
132. Reyes, C.L. and G. Chang, Structure of the ABC transporter MsbA in complex with ADP.vanadate 

and lipopolysaccharide. Science, 2005. 308(5724): p. 1028-31. 
133. Dawson, R.J. and K.P. Locher, Structure of a bacterial multidrug ABC transporter. Nature, 2006. 

443(7108): p. 180-5. 



Wiley STM / Protein Structure Prediction: Methods and Algorithms 

Chapter 17 / Maya Schushan & Nir Ben-Tal /  

page 35

134. Landau, M., et al., ConSurf 2005: the projection of evolutionary conservation scores of residues 

on protein structures. Nucleic Acids Res, 2005. 33(Web Server issue): p. W299-302. 
135. Olmea, O., B. Rost, and A. Valencia, Effective use of sequence correlation and conservation in 

fold recognition. J Mol Biol., 1999. 293(5): p. 1221-39. 
136. Muppirala , U.K. and Z. Li, A simple approach for protein structure discrimination based on the 

network pattern of conserved hydrophobic residues. Protein Eng Des Sel., 2006. 19(6): p. 265-75. 
. 

137. Mihalek, I., et al., Combining inference from evolution and geometric probability in protein 

structure evaluation. J Mol Biol., 2003. 331(1): p. 263-79. 
138. Yamashita, A., et al., Crystal structure of a bacterial homologue of Na+/Cl--dependent 

neurotransmitter transporters. Nature, 2005. 437(7056): p. 215-23. 
139. Forrest, L.R., et al., Mechanism for alternating access in neurotransmitter transporters. Proc Natl 

Acad Sci U S A, 2008. 105(30): p. 10338-43. 
 
 


