TABLE 1.2 A summary of the main types of electrostatic interactions found in proteins.

Van der Waals interactions are also described here because of their electrostatic nature. q is the full charge (in electron charges), μ is the dipole moment (in Debye), r_{ij} is the distance between the charges (in Å), and ε_r is the relative dielectric constant of the medium. The θ angles in the second and third equations are defined in Figure 1.15b. To obtain the energy in kcal/mol, the following prefactors should be used: **332** for the first equation, **69.1** for the second equation, and **14.4** for the third equation.

Interaction	Example	Potential energy	Distance dependence	Typical distance (Å)	Typical strength in vacuum *a (kcal/mol)
Charge-charge (ionic)	Salt bridge	$U = rac{q_i q_j}{arepsilon_r r_{ij}}$	1/ <i>r</i>	< 4 (salt bridge)	~80
Charge-fixed dipole	Hydrogen bond	$U = \frac{q_i \mu_j(\cos \theta)}{\varepsilon_r r_{ij}^2}$	$1/r^{2}$	2.8-3.0 *b	0-7 *c
Fixed dipole – fixed dipole	Hydrogen bond	$U = \frac{\mu_i \mu_j (2\cos\theta_i \cos\theta_j - \sin\theta_i \sin\theta_j)}{\varepsilon_r r_{ij}^3}$	$1/r^3$		
Induced dipole – induced dipole	Van-der Waals interactions	$U=rac{A_{ij}}{r_{ij}^{12}}-rac{B_{ij}}{r_{ij}^6}$	$1/r^6$ (attractive) $1/r^{12}$ (repulsive)	3.5 *d	0.1–0.5 [*] e

^{*}aIn proteins, the strength of these interactions is difficult to determine, and different values have been suggested by different studies (e.g., [136]; see Chapter 4 for details).

^{*}b[133]. In the case of hydrogen bonds, if the bond is described as donor-hydrogen-acceptor (D–H···A), the reported values correspond to the D···A distance. The corresponding H···A distance is typically 2 Å [134].
*c[166–168]

^{*}d[169]

^{*}e[167,170]