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ABSTRACT

Motivation: The analysis of co-evolving residues has been exhaus-

tively evaluated for the prediction of intramolecular amino acid

contacts in soluble proteins. Although a variety of different methods

for the detection of these co-evolving residues have been devel-

oped, the fraction of correctly predicted contacts remained

insufficient for their reliable application in the construction of

structural models. Membrane proteins, which constitute between

one-fourth and one-third of all proteins in an organism, were only

considered in few individual case studies.

Results:We present the first general study of correlated mutations in

�-helical membrane proteins. Using seven different prediction

algorithms, we extracted co-evolving residues for 14 membrane

proteins having a solved 3D structure. On average, distances

between correlated pairs of residues lying on different transmem-

brane segments were found to be significantly smaller compared

to a random prediction. Covariation of residues was frequently

found in direct sequence neighborhood to helix–helix contacts.

Based on the results obtained from individual prediction methods,

we constructed a consensus prediction for every protein in the

dataset that combines obtained correlations from different prediction

algorithms and simultaneously removes likely false positives. Using

this consensus prediction, 53% of all predicted residue pairs were

found within one helix turn of an observed helix–helix contact. Based

on the combination of co-evolving residues detected with the four

best prediction algorithms, interacting helices could be predicted

with a specificity of 83% and sensitivity of 42%.

Availability: http://webclu.bio.wzw.tum.de/helixcorr/

Contact: d.frishman@wzw.tum.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In order to maintain protein function, mutations that tend to

destabilize a particular protein structure may provoke other

positions to mutate concurrently in order to compensate for

the loss of stability. The first examples of such compensatory

changes were described by analyzing individual families

having a solved structure (Altschuh et al., 1987, 1988). Amino

acid contacts were initially thought to be primary spots of these

compensatory processes, making the detection of sequence

positions with correlated mutational behavior an interesting

feature for contact prediction methods. Accordingly, the first

approach to detect co-evolving residues in a multiple sequence

alignment was published in 1994 (Gobel et al., 1994) and a

variety of additional detection algorithms have been reported

since then. However, prediction accuracies for structural

contacts in globular proteins hardly exceeded 20% (Fodor

and Aldrich, 2004), strongly limiting the practical utility of

the predicted contacts as structural constraints in ab initio

structure prediction. Despite this general drawback for the

intensive use of correlated mutations, several successes in

individual applications have been reported. For example,

the global fold could be successfully predicted for 20 non-

homologous proteins with less than 100 amino acids with a

root-mean-square deviation (r.m.s.d.) between 3.0 and 6.5 Å

in an ab initio folding simulation using co-evolving residues as

constraints (Ortiz et al., 1998a, b). Besides their application

in fold recognition or structure prediction, compensatory

mutations were also found instrumental in detecting both

interacting proteins and interaction regions between two

proteins (Filizola et al., 2002; Pazos and Valencia, 2002;

Pazos et al., 1997). It was also shown that networks of

correlated mutations tend to appear near binding regions

and active sites (Gloor et al., 2005) allowing for the identifica-

tion of functionally important regions in combination with

entropic measures (Saraf et al., 2003). Lately, WW domain

sequences that fold into stable structures and function like

natural WW domains could be artificially engineered based

on information obtained from an evolutionary coupling

analysis (Russ et al., 2005; Socolich et al., 2005).

The broad range of reported applications for co-evolving

residues is accompanied by an even more comprehensive

number of approaches proposed for their detection in a

multiple alignment. The strategy most commonly used relies

on the calculation of a Pearson correlation coefficient to detect

alignment positions with similar patterns of amino acid

change (Gobel et al., 1994; Kundrotas and Alexov, 2006;

Neher, 1994; Olmea and Valencia, 1997; Pollock and Taylor,

1997; Taylor and Hatrick, 1994). In order to reduce the number*To whom correspondence should be addressed.
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of false positives, several authors proposed to additionally
include phylogenetic information about the analyzed sequences
in the prediction process (Chelvanayagam et al., 1997; Fares and

Travers, 2006; Fleishman et al., 2004a, b; Noivirt et al., 2005;
Shindyalov et al., 1994). Other prediction algorithms try
to detect significant co-evolution based on a �2 goodness-of-fit
test comparing the observed co-occurrence of two residues with
their expected co-occurrence (Kass and Horovitz, 2002; Larson
et al., 2000; Noivirt et al., 2005), by using a maximum-likelihood

approach (Pollock et al., 1999) or through the application
of information theory (Clarke, 1995; Gloor et al., 2005; Martin
et al., 2005). An alternative approach is constituted by

perturbation-based methods such as SCA (Statistical Coupling
Analysis) (Dekker et al., 2004; Lockless andRanganathan, 1999;

Suel et al., 2003) where co-evolution of residues is identified by
the analysis of statistical coupling of amino acid distributions.
Subalignments having a changed amino acid distribution

at certain positions are used to evaluate the effect of this
perturbation on the residue compositions at other positions
of the alignment.

Independent of the prediction strategy used, most studies on
co-evolving residues so far were conducted with soluble proteins.
Membrane proteins, which constitute between one-fourth and

one-third of all proteins in an organism (Frishman and Mewes,
1997; Wallin and von Heijne, 1998), were only considered in few
individual case studies (Oliveira et al., 2003; Filizola et al., 2002;

Fleishman et al., 2004a, b). Due to the paucity of 3D structures, a
general analysis of co-evolving residues in a large non-redundant
dataset of membrane proteins is still missing. Approaches to

predict residues participating in helix–helix contacts are rather
based on the idea to identify membrane-exposed and buried

residues (Adamian and Liang, 2006; Chen and Xu, 2006;
Hildebrand et al., 2006). However, pairs of contacting residues
cannot be identified with these methods. With the accumulation

of more membrane protein structures in recent years, it is now
possible to analyze the utility of correlated mutation detection
methods specifically for membrane proteins.

Here, we present the first large-scale analysis of co-evolving
residues in membrane proteins with special emphasis on their
possible application for the prediction of interacting helices.

Using nine different prediction algorithms, we extracted
co-evolving residues for membrane protein clusters taken from
the CAMPS database of membrane proteins (Martin-Galiano

and Frishman, 2006), which include at least one protein
with solved structure. While residue contact prediction accura-
cies generally did not exceed 10% with any of the employed

methods, a remarkable fraction of up to 49% of all correlations
were found to be as close as one helical turn within an actual
helix–helix contact. Using a consensus prediction approach,

where correlations detected with different prediction algorithms
were combined, this value could be further increased to 53%,

and interacting helices could be predicted at a specificity of 83%
and sensitivity of 42%.

2 METHODS

2.1 Data

Protein sequences were taken from the most recent version of the

CAMPS database of membrane proteins (Martin-Galiano and

Frishman, 2006) covering 120 prokaryotic genomes. Transmembrane

segments (TMS) were predicted by TMHMM 2.0 (Krogh et al., 2001).

For our study of co-evolving residues, we extracted all SC-clusters from

CAMPS. At this clustering level, the generated groups of proteins

roughly correspond to structural folds. Cluster sequences were

aligned by CLUSTALW using default parameters (Thompson et al.,

1994). For the prediction of co-evolving residues in TMS, conserved

transmembrane regions (TMS cores) were extracted from CAMPS and

concatenated to form sequences representing only the transmembrane

parts of each protein.

From the set of pre-aligned TMS sequences, all sequences considered

inappropriate for the analysis were discarded. Since highly similar

sequences might result in few correlations due to a lack of variability,

sequences with a pair-wise identity above a pre-set threshold were

considered redundant and removed. Different thresholds were used in

individual predictions ranging from 95% pair-wise identity down

to 50% identity. The thresholds were chosen dependent on the total

number of sequences in the alignment to allow for an optimal trade-off

between a minimal number of required sequences and sufficient

sequence diversity for a successful prediction. In addition, sequences

with 25% or more gaps within at least one TMS were removed.

According to these rules, the number of removed sequences varied

between 3 in clusters with well-aligned sequences uniformly covering the

cluster sequence space and 346 in the case of a cluster with several

tightly connected sub-clusters. The final number of sequences in

individual alignments ranged from 20 to 228.

During an initial prediction step, co-evolving residues were predicted

for all SC-clusters of CAMPS. In a subsequent selection step, clusters

found to be suboptimal due to high sequence diversity were either

discarded in case the number of valid sequences in the final multiple

alignments was below 15 or replaced by sub-clusters with higher

similarity among their members. Inappropriate clusters were identified

by either an average pair-wise identity of below 15% or an extremely

small number of obtained correlations (less than one per TMS).

This procedure was repeated until a cluster was either appropriate for

the analysis of correlated mutations or had to be removed due to an

insufficient number of sequences. In total, starting from 266 SC-clusters

currently available in CAMPS 91 optimal clusters were obtained, 14 of

which contained a representative structure (Supplementary Table 1).

2.2 Prediction of co-evolving residues

Co-evolving residues were predicted using seven different prediction

algorithms: McBASC (Olmea and Valencia, 1997), OMES (Fodor and

Aldrich, 2004; Kass and Horovitz, 2002), CORRMUT (Fleishman

et al., 2004a), CAPS (Fares and Travers, 2006), MI (Gloor et al., 2005),

SCA (Lockless and Ranganathan, 1999) and ELSC (Dekker et al.,

2004). For the McBASC algorithm two different substitution matrices

[the Miyata matrix (Miyata et al., 1979) and the McLachlan matrix

(McLachlan, 1971)] were evaluated and the OMES algorithm was

applied in two different versions, as originally introduced by Kass and

Horovitz (OMES-KASS) (Kass and Horovitz, 2002) and in its modified

version presented by Fodor and Aldrich (OMES-FODOR) (Fodor and

Aldrich, 2004).

McBASC. We used the original algorithm of Gobel et al. (1994)

with its refinements as introduced by Olmea and Valencia (1997).

To select significantly correlated sequence positions, we applied a

length-dependent threshold by choosing no more of the highest

correlated pairs than one-fifth of the protein length (L/5 criterium).

OMES. We implemented the original version of the algorithm

(OMES-KASS) (Kass and Horovitz, 2002) where the statistical

significance of the difference between observed and expected frequen-

cies is calculated using the �2 goodness-of-fit test. All covariations

with P-values of less than 0.001 were considered to be significantly

correlated and the L/5 most significant correlations were selected.
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Additionally, co-evolving residues were predicted with the modified

OMES algorithm as provided by A. Fodor (www.afodor.net). Based

on the calculated correlation score, the L/5 highest correlated residues

were selected.

CORRMUT. For predictions using the CORRMUT algorithm

(Fleishman et al., 2004a), a phylogenetic tree of all sequences in the

obtained multiple alignment was calculated and ancestor sequences

at internal nodes of the tree were reconstructed with the program

FASTML (Pupko et al., 2000). The Miyata matrix (Miyata et al., 1979)

was chosen as substitution matrix. The significance of the derived

correlation coefficient was estimated by confidence intervals obtained

from a bootstrap procedure using a sample size of 400. Correlation

coefficients calculated for each sample were used to derive a mean

Pearson correlation coefficient (r) as well as the 95% confidence

intervals (rlow, rhigh). To identify significantly correlated residue pairs,

we applied a minimal threshold of 0.4 for the mean correlation

coefficient and a minimal rlow-value of 0.05 and selected then the length/

5 highest correlated sequence positions. The thresholds for the mean

correlation coefficient and the lower confidence boundary were

established in preliminary experiments where they were found to

permit the best trade-off between number of detected correlations and

prediction accuracy. However, with the exception of one protein (1PW4

chain A) the number of correlations satisfying these thresholds was

clearly lower in comparison to other prediction algorithms such as

McBASC or OMES.

CAPS. Predictions with the CAPS algorithm (Fares and Travers,

2006) were executed using the provided program (http://bioinf.gen.

tcd.ie/�faresm/software/caps/) and recommended standard parameters.

Again a minimal correlation coefficient of 0.4 was applied as threshold

and the length/5 highest correlated pairs were selected. Using these

selection criteria predictions for only five proteins could be obtained

(1XQE chain A, 1IWG chain A, 1RC2 chain A, 1L7V chain A and

1RHZ chain A). In all other cases, the number of sequences in the

multiple alignment (generally less than 50) seemed to be insufficient for

this prediction algorithm.

MI. The MI algorithm was implemented as described earlier in

comparative studies on correlated mutations (Halperin et al., 2006).

The L/5 pairs with the highest MI score were selected.

SCA/ELSC. Both algorithms are used in the implementation

provided by A. Fodor (www.afodor.net). The L/5 correlations with

the highest score were again chosen in both cases.

2.3 Structural validation

Observed distances between residue pairs were extracted by calculating

the minimal distance between side-chain or backbone atoms of the

two residues. Two residues were considered in contact if their minimal

distance was 55.5 Å. The 5.5 Å cutoff was chosen as the maximal

distance between a pair of heavy (i.e. non-hydrogen) atoms that is

indicative of a direct contact; at larger distances, a third atom may fit in

between the atom pair. Other studies on correlated mutations have

often used a contact definition based on C�-distances and an 8 Å cutoff.

However, due to the regular backbone conformation of �-helical

membrane proteins we consider a contact criterion incorporating side-

chain atoms better suited for the analysis of helix–helix interactions.

Contact prediction accuracies based on C�-distances and a contact

threshold of 8 Å are provided in the Supplementary Table 3.

From the number of predicted contacts and the number of observed

contacts, the prediction accuracy (fraction of correctly predicted

contacts out of all correlations found) was calculated for only those

correlated pairs lying on different transmembrane helices (accuracysep).

A P-value was determined based on the hypergeometric distribution

and the probability to pick a residue pair in contact by random to

estimate the significance of the obtained prediction.

Since correlated positions may contain information beyond

mere physical contacts between individual residues, two additional

quality measures were used to investigate the prediction outcome.

The harmonic average Xd was introduced by Pazos et al. (1997) as a

measure of relative proximity rather than direct contact. For the

calculation of the Xd value, the distribution of C�-distances between

correlated residues is compared to the distribution of distances for all

pairs of positions. Distances from both distributions are grouped into

bins of 4 Å and the differences between the two distributions are

calculated for each bin. The differences are weighed with the inverse

of the normalized distance of the corresponding bin and are added.

A value of Xd¼ 0 indicates no separation between the two distributions,

while Xd40 indicates a shift of correlated residues towards smaller

distances. The larger a positive Xd-value the more efficient is the

corresponding prediction:

Xd ¼
Xn

i¼1

Pic � Pia

din
ð1Þ

where Pic and Pia are the percentages of correlated and all residue pairs

with distance between di and di�1, di is the upper limit of each bin

(normalized to 60) and n is the number of distance bins (15 for the range

from 4 to 60 Å).

Additionally we used a ‘�-Analysis’ (Ortiz et al., 1999) to investigate

the position of found correlations with respect to observed helix–helix

contacts. Within this analysis, the fraction of correlations with residues

i and j is calculated that have an observed contact between residues in

the interval {i� �,iþ �} and {j� �,jþ �}. With �¼ 4, the fraction of

correlations where both participating residues lie within one turn of

residues forming an interhelical contact is detected. Again a P-value

was calculated based on the hypergeometric distribution to estimate the

significance of the prediction.

2.4 Prediction of helix–helix interactions

From 14 proteins with available crystal structure, a dataset of helix–

helix pairs was extracted. After removing helix pairs from proteins with

only three transmembrane segments, a total of 370 predicted helix pairs

remained. Predicted transmembrane segments were compared against

transmembrane helix positions determined using structural information

as obtained from the Protein Data Bank of Transmembrane Proteins

(Tusnady et al., 2005). The comparison revealed a total number of 3

missing helices in our dataset, 3 additional predicted helices and 3 cases

where segments were either joined or split (Supplementary Table 1).

These transmembrane segments were not included in our analysis

resulting in 325 helix pairs, of which 166 were considered to be in

contact since they contained at least one residue pair having a minimal

distance of 55.5 Å. Several consensus helix pair prediction methods

were evaluated where both the required number of correlated mutations

for a certain helix pair was varied and combinations of different

prediction methods were tested. In each case, the sensitivity and

specificity of the observed prediction was calculated and compared to a

random prediction obtained by calculating the expected number of

correctly predicted helix pairs based on the probability for a contacting

helix pair. The significance of each prediction was evaluated using a

�2-test.

3 RESULTS AND DISCUSSION

3.1 Selection of optimal CAMPS protein clusters

for the prediction of co-evolving residues

For the analysis of co-evolving residues in membrane

proteins, we developed a procedure to extract optimal protein

clusters from the CAMPS database of membrane proteins

A.Fuchs et al.
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(Martin-Galiano and Frishman, 2006). Starting with the 266

clusters corresponding to structural folds (SC-clusters), clusters

whose sequences were too diverse to allow for reliable

predictions were discarded or replaced by sub-clusters. On the

other hand, since highly similar sequences might result in

few correlations due to a lack of variability, sequences with a

pair-wise identity above a pre-set threshold were considered

redundant and removed. Based on this selection procedure, 91

optimal protein clusters were selected, of which 14 contained

at least one representative protein structure (Supplementary

Table 1). Multiple alignments for these clusters were obtained

by concatenating transmembrane core sequences extracted

from CAMPS. Co-evolving residues were extracted using

seven different prediction algorithms [McBASC (Olmea and

Valencia, 1997), OMES (Fodor and Aldrich, 2004; Kass and

Horovitz, 2002), CORRMUT (Fleishman et al., 2004a), CAPS

(Fares and Travers, 2006), MI (Gloor et al., 2005), SCA

(Lockless and Ranganathan, 1999) and ELSC (Dekker et al.,

2004)], which broadly cover the range of prediction approaches

known from literature. Additionally two different substitution

matrices (the Miyata matrix and the McLachlan matrix) were

evaluated in combination with the McBASC algorithm

(McBASC-Miyata, McBASC-McLachlan) and the OMES

algorithm was applied in two different versions, both as

originally introduced by Kass and Horovitz (OMES-KASS)

(Kass and Horovitz, 2002) and in its modified version presented

by Fodor and Aldrich (OMES-FODOR) (Fodor and Aldrich,

2004), resulting in a total of nine different predictions for every

multiple alignment. The number of significantly correlated

residue pairs was chosen proportional to the length of the

multiple alignment by extracting the top L/5 correlations, with

L being the alignment length. However, in the case of the two

prediction algorithms CORRMUT and CAPS the number of

obtained correlations with a minimal correlation coefficient of

0.4 was less than L/5 in most proteins. Figure 1 shows

the sequence separation between all co-evolving residue pairs

obtained by this procedure. A clearly resolved peak corre-

sponding to a sequence separation of four residues (one turn of

an �-helix) is observed, which confirms that the obtained

multiple alignments are indeed well suited for the prediction of

co-evolving residues in membrane proteins.

3.2 Helix–helix contact predictions obtained

with different prediction algorithms

In order to evaluate the ability of individual algorithms to

predict structural contacts in membrane proteins, contact

prediction accuracies (fraction of correctly predicted contacts

out of all correlations found) were calculated for all

correlations with residues lying on separate TMS. Depending

on the prediction algorithm, between 3% (SCA) and 9%

(McBASC-McLachlan) of these correlations were found to

be helix–helix interactions (Table 1). According to a hypergeo-

metric distribution, significant predictions with P-values of

less than 0.001 were obtained for all prediction methods

except SCA.
Similar results were obtained when the number of selected

correlations was not chosen proportional to the length of the

multiple alignment used for the prediction but varied over

a broad range independent of the proteins’ lengths (Fig. 2A).

Again McBASC used with the McLachlan matrix performed

slightly better than the other prediction algorithms. From

the two OMES variations we found the original version

(OMES-KASS) to be slightly superior to its variation

introduced by Fodor and Aldrich. MI and SCA were

found to be the least powerful algorithms in the prediction of

helix–helix contacts independent of the number of significantly

correlated residue pairs selected. The algorithms CAPS and

CORRMUT were excluded from this analysis since the

number of significantly correlated residues obtained with

these two algorithms was in most proteins clearly smaller

than with the other prediction algorithms.

Fig. 1. Sequence separation of co-evolving residues detected in

membrane proteins with nine different prediction algorithms.

Table 1. Contact prediction accuracies for different prediction algo-

rithms applied to 14 membrane proteins with transmembrane segments

predicted by TMHMM2.0. CONSENSUS-14 and CONSENSUS-R-5

correspond to two consensus predictions, where predicted correlated

mutations, obtained with different prediction algorithms are combined

Method Proteins Accuracy

[%]

P-value Xd Accuracy

(|�|¼ 4)

[%]

P-value

McBASC-

Miyata

14 8 2.59E–14 5.6 49 3.91E–30

McBASC-

McLachlan

14 9 3.050E–17 5.0 42 1.36E–16

OMES-

KASS

14 8 6.37E–13 4.9 43 2.55E–17

OMES-

FODOR

14 7 1.38E–11 4.0 38 4.73E–11

CORRMUT 13 7 3.26E–05 4.4 38 9.25E–06

CAPS 5 7 8.06E–04 4.4 42 5.09E–05

MI 14 5 2.08E–04 �1.8 19 0.998

SCA 14 3 0.032 0.48 26 0.152

ELSC 14 7 4.42E–09 3.2 37 2.24E–09

CONSENSUS

-14

14 11 1.08E–54 8.5 53 4.1E–100

CONSENSUS

-R-5

14 10 4.35E–47 6.7 51 5.18E–82
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3.3 Co-evolving residues are frequently found

within close neighborhood to helix–helix contacts

Despite the low percentage of correctly predicted contacts, we

observed a high fraction of detected correlations to be in direct

neighborhood of helix–helix interactions. Starting with a

general analysis of residue–residue distances we found distances

between correlated residues lying on different transmembrane

segments clearly shifted towards smaller values compared to the

distance distribution observed for all possible pair of amino

acids, as was already described for soluble proteins (Olmea

et al., 1999). When analyzing the results of every prediction

method individually, this shift towards smaller residues was

observed for all algorithms except MI and SCA. In the case of

MI, distances between correlations were even shifted towards

larger distances compared to the overall distances distribution.

(Supplementary Fig. 1). The difference between the two

distance distributions can be quantified using the harmonic

average Xd as introduced by Valencia and co-workers (Pazos

et al., 1997), where Xd40 indicates a shift of the population of

predicted residue pairs to smaller distances with respect to the

population of all pairs. For our dataset, we obtained a maximal

Xd-value of 5.6 (McBASC-Miyata) (Table 1). Intermediate

Xd-values between 3.2 and 5.0 were obtained with the methods

ELSC, McBASC-McLachlan, OMES-KASS, OMES-FODOR,

CAPS and CORRMUT. Besides the results obtained with MI

and SCA (negative Xd-value or Xd close to zero, respectively),

these results are comparable to those obtained for soluble

proteins, where a contact prediction accuracy of 9% and an

Xd of 4.31 was reported for a dataset of 173 proteins using the

McBASC algorithm in combination with the McLachlan
matrix (Fariselli et al., 2001). However, it is noteworthy that
all-� soluble proteins are known to be the most difficult targets

for contact prediction using correlated mutations.
Using a neural network approach, incorporating also other

information such as sequence conservation or predicted

secondary structure, an average prediction accuracy of 7%
and Xd-values for individual proteins between �5.0 and 2.7
were reported (Fariselli et al., 2001). While the contact
prediction accuracy is comparable to the results obtained here

for �-helical membrane proteins, the Xd-values are clearly
smaller for all-� soluble proteins. The better results obtained
for membrane proteins suggest that their typical structural

arrangement, with several contacting residues between parallel
interacting helices, is more inclined to prompt residues lying in
close structural distance to co-evolve in comparison to soluble

all-� proteins.
Using a ‘�-evaluation’ (Ortiz et al., 1999), where the fraction

of correlated positions i and j is calculated with an observed

helix–helix contact between residues in the intervals {i� �,iþ �)
and {j� �,jþ �}, we found, on average, up to 49% (McBASC-
Miyata) of all detected correlated pairs to be situated within

the same helical turn as an actual contact (accuracy with |�|¼ 4)
(Table 1). The exact fraction differed strongly, depending
on the protein and the applied prediction algorithm

(Supplementary Table 2). In individual cases, such as the
mechanosensitive channel protein (1MXM), the best prediction
was obtained with the MI algorithm, which, on average,

performed worse than all other prediction algorithms.
As presented earlier for helix–helix contact prediction accura-
cies, we also analyzed the influence of the selected number of

correlated residues on the obtained accuracy with |�|¼ 4
(Fig. 2B). In contrast to the prediction of helix–helix contacts,
where the McLachlan matrix performed better than the

Miyata matrix, in this analysis best results were obtained
using the McBASC algorithm in combination with the Miyata
matrix. OMES-KASS on the other hand outperformed also

in this analysis its variant OMES-FODOR. Results using
SCA and MI were again clearly inferior to results from all
other prediction algorithms.

In publications on co-evolving residues in soluble proteins,
the low contact prediction accuracy using correlated mutations
has often been attributed to methodological problems

in separating real correlated mutational behavior from
random noise as well as to co-evolution of distant residues
due to long-range interactions (Fleishman et al., 2004a;

Lockless and Ranganathan, 1999) or functional reasons
(Gloor et al., 2005). In membrane proteins, pairs or networks
of compensatory mutations seem to affect the packing context

of transmembrane helices rather than the contacts themselves,
as can be concluded from the high fraction of co-evolving
residues found in direct neighborhood to helix–helix contacts

(see also Supplementary Fig. 2). The surrounding residues of
helix–helix contacts might be generally more amenable to
mutational change than the residues in actual contacts, but

are still sufficiently important for proper helix interactions
to make the compensation of destabilizing amino acid
substitutions beneficial for protein stability. This finding is

compatible with experimental evidence that helix–helix

Fig. 2. Predictive performance of seven prediction methods for

transmembrane proteins in relation to the number of predicted

correlations. (A) Prediction accuracy for helix–helix contacts.

(B) Fraction of correlations lying within one helix turn of a helix–

helix contact (accuracy with |�|¼ 4).
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interactions mediated both by polar residues and interaction

motifs are dependent on the sequence context (Schneider and

Engelman, 2004).

3.4 Prediction accuracies can be improved by using

a consensus approach combining several

prediction methods

Based on the observation that results with different predic-

tion algorithms vary remarkably for individual proteins

(Supplementary Table 2), we aimed on constructing consensus

predictions for every protein combining detected co-evolving

residues from different prediction methods. Since the two

prediction methods SCA and MI were shown to perform worse

regardless of the prediction quality measure used these two

algorithms were excluded of any consensus approach.

The results of the remaining seven predictions were combined

to retrieve a consensus prediction (termed CONSENSUS).

To further improve the obtained prediction by reducing likely

false positives, all correlations lying on a pair of helices with a

total number of detected correlations less than a given

threshold N were removed.

Figure 3 shows that both the helix–helix contact prediction

accuracy and the accuracy (|�|¼ 4) indeed increase with an

increase in this threshold N. With N¼ 14 (CONSENSUS-14),

the helix–helix contact prediction accuracy could be improved

to close to 11% (compared to 9% as best result for a single

algorithm) and the accuracy (|�|¼ 4) could be elevated to 53%

(compared to 49% again as best results for an individual

algorithm) (Table 1).

For a second consensus approach, correlations detected with

the four best performing prediction methods (McBASC-Miyata,

McBASC-McLachlan, OMES-KASS and CAPS, selected based

on their accuracy with |�|¼ 4) were combined and again all

correlations on helix pairs with less than N correlations in total

were removed (reduced consensus or CONSENSUS-R). With

N¼ 5 (CONSENSUS-R-5), helix–helix contacts could be

predicted with 10% accuracy and the fraction of correlations

lying within one helical turn of an actual helix–helix contact was

found to be 51%. The contact map of the AcrB bacterial

multidrug efflux transporter (Supplementary Fig. 2) shows an

example of how false positive predictions can be removed by

applying this threshold N¼ 5 in comparison to a mere

combination of individual prediction methods.

3.5 Prediction accuracies based on experimentally

determined TMS

All results presented so far were based on multiple alignments

consisting of transmembrane segments predicted with

TMHMM. As shown in Supplementary Table 1, these

predicted TMS positions may differ slightly from those

determined based on the PDB structure. To evaluate whether

these differences have a noticeable effect on the detection of

co-evolving residues, multiple alignments consisting of experi-

mentally determined transmembrane segments were obtained.

Correlated mutations were predicted using the same procedure

as used earlier for the multiple alignments consisting of

predicted TMS. We found that helix–helix contact prediction

accuracies increased between 1% and 5% while the fraction of

correlations within one helix turn of a helix–helix contact

increased even by 13% in the case of the MI algorithm

(Table 2). The analysis of co-evolving residues in membrane

proteins, where solved protein structures as well as experimen-

tally determined topologies are generally only available in rare

cases, is therefore also significantly dependent on the quality of

the predicted TMS positions.

Fig. 3. Improvement of helix–helix contact prediction accuracy (A) and

accuracy (|�|¼ 4) (B) by applying a consensus approach. The line

indicates for comparison the maximal value obtained with a single

prediction algorithm.

Table 2. Contact prediction accuracies for different prediction algo-

rithms applied to 14 membrane proteins with experimentally deter-

mined transmembrane segments

Method Proteins Accuracy

[%]

P-value Accuracy

(|�|¼ 4)

[%]

P-value

McBASC-

Miyata

14 9 6.22E–14 49 7.82E–28

McBASC-

McLachlan

14 10 6.48E–17 46 4.92E–21

OMES-KASS 14 9 1.17E–14 50 2.55E–28

OMES-FODOR 14 8 7.78E–12 41 1.73E–14

CORRMUT 14 7 1.65E–05 33 0.0016

CAPS 5 12 1.29E–06 47 8.31E–07

MI 12 8 3.07E–10 32 0.0014

SCA 14 3 0.0702 27 0.1131

ELSC 14 10 6.48E–17 41 1.73E–14

CONSENSUS-14 14 12 1.41E–53 55 2.48E–95

CONSENSUS

-R-5

14 11 3.64E–42 56 6.26E–94
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3.6 Prediction of interacting helices using

correlated mutations

Membrane proteins show a relatively high structural simplicity

compared to soluble proteins due to the severe structural

constraints imposed by the lipid bilayer. Thus, in a first

approximation, structure prediction of transmembrane

domains is basically reduced to the question of how trans-

membrane segments interact along the membrane. Since

co-evolving residues were found to frequently appear in close

neighborhood to helix–helix contacts, we wanted to evaluate

the applicability of those co-evolving residues for the

prediction of interacting helix pairs in membrane proteins.

To minimize the number of incorrectly predicted interactions

without loosing too much valuable information, the

CONSENSUS-R approach was used for this analysis, which

combines results from four prediction algorithms that we

earlier found to perform best on membrane proteins

(McBASC-Miyata, McBASC-McLachlan, OMES-KASS and

CAPS). Out of 325 helix pairs in our dataset, the 166 actual

interacting pairs were predicted with varying specificity

and sensitivity, depending on the number N of correlated

mutations required for a positive prediction (Table 3).

For example, with N¼ 5, i.e. where a helix pair is predicted

as interacting in case at least five correlations are found for

these helix pair, interacting helices could be predicted with a

sensitivity of 42% and a specificity of 83%. A prediction

accuracy of 71.9% could be achieved in this case. According to

a �-test, this prediction is significant with a P-value of

2.19E�06. By raising the threshold N to higher values, the

specificity of the prediction rises at the expense of a smaller

number of predicted interactions. For example, with N¼ 7

about one-fourth (27.1%) of all interacting helices in the

dataset can be predicted with a specificity of around 92.5%

(P-value 7.14E�06). The prediction accuracy increases to

78.9%.

4 CONCLUSION

According to the two-stage model, membrane protein

folding involves the packing of preformed �-helices (Popot

and Engelman, 2000). Therefore, the number of required

structural restraints for the construction of a structural model

is clearly reduced compared to soluble proteins. Although in

our dataset of 14 proteins of known crystal structure only

a small fraction of predicted correlations involved pairs of

residues in physical contact, a sizeable fraction of the

correlations was found to be in close vicinity to interhelical

contacts. This allows for the prediction of helix pairs that are

likely to be in direct contact, possibly along with the

approximate interacting region. Together with the analysis

of interaction motifs (Walters and DeGrado, 2006) and

evolutionarily conserved residues (Fleishman et al., 2004a)

this should be a valuable tool for the prediction of membrane

protein structures.
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