
BIOINFORMATICS Vol. 20 Suppl. 1 2004, pages i122–i129
DOI: 10.1093/bioinformatics/bth939

Assigning transmembrane segments to helices
in intermediate-resolution structures

Angela Enosh 1,∗, Sarel J. Fleishman 2, Nir Ben-Tal 2 and
Dan Halperin1

1School of Computer Science and 2Department of Biochemistry, Tel Aviv University,
Ramat Aviv, 69978, Israel

Received on January 15, 2004; accepted on March 1, 2004

ABSTRACT
Motivation: Transmembrane (TM) proteins that form α-helix
bundles constitute approximately 50% of contemporary drug
targets. Yet, it is difficult to determine their high-resolution
(< 4 Å) structures. SomeTM proteins yield more easily to struc-
ture determination using cryo electron microscopy (cryo-EM),
though this technique most often results in lower resolution
structures, precluding an unambiguous assignment of TM
amino acid sequences to the helices seen in the structure.
We present computational tools for assigning the TM seg-
ments in the protein’s sequence to the helices seen in cryo-EM
structures.
Results: The method examines all feasible TM helix assign-
ments and ranks each one based on a score function that was
derived from loops in the structures of soluble α-helix bundles.
A set of the most likely assignments is then suggested. We
tested the method on eight TM chains of known structures,
such as bacteriorhodopsin and the lactose permease. Our res-
ults indicate that many assignments can be rejected at the
outset, since they involve the connection of pairs of remotely
placed TM helices. The correct assignment received a high
score, and was ranked highly among the remaining assign-
ments. For example, in the lactose permease, which contains
12 TM helices, most of which are connected by short loops,
only 12 out of 479 million assignments were found to be
feasible, and the native one was ranked first.
Availability: The program and the non-redundant set of pro-
tein structures used here are available at http://www.cs.tau.
ac.il/~angela
Contact: angela@post.tau.ac.il

1 INTRODUCTION
In recent years, the pace of structure determination of TM
proteins has increased, but technical problems related to pro-
tein purification and crystallization still hamper TM protein
structure determination. Thus, notwithstanding their biomed-
ical importance, less than 40 distinct folds of TM proteins
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have been solved to date by high-resolution methods such as
X-ray crystallography.

Eukaryotic TM proteins form predominantly α-helix
bundles in the membrane. These proteins are comprised of
TM helices and loops, which are typically located on the
internal or external sides of the membrane, and connect pairs
of consecutive helices.

Some of the factors stabilizing TM protein structures have
been elucidated in recent years on the basis of solved struc-
tures and biochemical experiments (e.g. Choma et al., 2000;
Eilers et al., 2000; MacKenzie and Engelman, 1998; Russ
and Engelman, 2000). A number of computational methods
have been suggested for positioning and orienting the helices
comprising the TM domain with respect to one another (e.g.
Adams et al., 1995; Fleishman and Ben-Tal, 2002; Kim et al.,
2003; Pellegrini-Calace et al., 2003).

Here, we consider a situation in which the locations of the
TM helices in three-dimensional (3D)-space can be deduced
experimentally. The challenge is then to assign the TM seg-
ments in the protein sequence into the corresponding helices in
3D-space. For concreteness, let us focus on proteins that were
solved at intermediate in-plane resolution (5–10 Å) (Unger,
2001). From these data, one can derive helix positions, as
well as their tilt and azimuthal angles with respect to the
membrane. However, the positions of the individual amino
acids cannot be identified, so that the correspondence between
the TM segments and the cryo-EM helices cannot be decided
unambiguously. So far, no method has tackled this problem.

Providing a solution to the helix-assignment problem is a
first step toward modeling of TM proteins. That is, by assign-
ing the TM segments to the helices in the cryo-EM data,
conformation space in a modeling exercise can be limited sub-
stantially. In addition, helix assignment is directly useful for
structural studies of TM proteins, as it reveals which helices
are in contact with each other, and outlines helices that are
located in critical positions, such as around a pore in channels
and pumps.

We show here that many putative helix assignments can be
eliminated based on the (estimated) maximal lengths of each
of the loops in the protein. In addition, we present a novel score
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Fig. 1. (a) The locations of the three TM segments in the sequence
of chain H of the cytochrome c oxidase. (b) The corresponding 3D
structure. (c) The assignment graph of this chain. The numbers rep-
resent the helices and the letters represent the TM segments. There are
four valid paths (feasible assignments) in the graph which are as fol-
lows; (A0, B1, C2), (A0, B2, C1), (A2, B0, C1) and (A2, B1, C0).
Note that there is no edge between (B0) and (C2), for example, since
the loop between the TM segments B and C is too short to connect
helices 0 and 2.

function, which was derived on the basis of conformations of
loops in α-helix bundles (of soluble proteins), in order to rate
the capability of loops to connect each pair of helices. Based
on this score function, we ranked assignments of 8 TM-protein
chains of known structures taken from the Protein Data Bank
(PDB, http://www.rcsb.org/pdb/), and our results show that
the native-state assignment ranks high in many cases.

1.1 Terminology and formal statement of the
problem

The sequence of a TM protein of the α-helix bundle type,
denoted by S, comprises TM and extra-membrane segments,
which connect TM segments that are consecutive in the
sequence (Fig. 1a). The locations of TM segments in pro-
tein sequences can be predicted fairly precisely on the basis
of sequence data alone (Chen et al., 2002). We denote a
TM segment, Ti ∈ S, by Ti = {ti1, ti2, . . . , tiki

}, as an
ordered sequence of amino acids from the N- to the C-
terminus. Similarly, we denote an extra-membrane segment,
Xi ∈ S, by Xi = {xi1, xi2, . . . , xiki

}, as an ordered sequence
of amino acids from the N- to the C-terminus. The length
of an extra-membrane segment Xi , denoted by length(Xi),
is the number of amino acids in the segment. The maximal
distance between two points that can be connected by Xi is
denoted by max_dist(Xi) = [length(Xi)+1]×dist(Cα, Cα),
where dist(Cα, Cα) is the distance between two consecutive
Cα atoms, which is typically taken as 3.8 Å (Creighton, 1993).

Definition of helices. Positions, tilt and azimuthal angles of
each helix can be extracted from intermediate-resolution cryo-
EM maps (Unger, 2001). Canonical α-helices are constructed,
and made to fit the cryo-EM map. We represent each such
helix by a sequence of coordinates of its Cα atoms, Ci =
{ci1, ci2, . . . , ciki

}. The membrane can be regarded as a region
in 3D bounded by two planes, to which we refer as the inner
and the outer planes of the membrane. We define an order
on a helix Ci in the sense that ci1 is the closest atom to the
inner plane of the membrane, and ciki

is the closest atom to
the outer plane of the membrane. We denote the internal Cα

atom by internal(Ci) = ci1, and the external Cα atom by
external(Ci) = ciki

.
It should be noted that the positions of helices deduced from

cryo-EM in this manner suffer from imprecision. First, the
orientations of the helices around their principal axes cannot
be derived from cryo-EM maps due to the limited in-plane
resolution [typically, 5–10 Å (Unger, 2001)]. Moreover, the
low resolution along the axis normal to the membrane plane
(12–30 Å) entails a large distortion in the positions of helices
along this axis. For simplicity, we avoid dealing with these
inaccuracies in the description of our algorithm. However,
as described in Appendix A, our program takes the noisiness
that results from the limited resolution into account by also
testing helix positions that are in the vicinity of those seen in
the cryo-EM data.

Formal definition of our goals. Given the secondary-
structure classification of a TM protein sequence S =
{T1, X1, T2, . . . , Xn−1, Tn} and a set of helix locations in 3D-
space C = {C1, C2, . . . , Cn}, derived from the cryo-EM map,
(i) find all the feasible assignments between the T ′

i s and the
C′

i s, namely find a permutation σ such that for each 1 ≤ i ≤ n,
Ti is assigned to Cσ(i), and (ii) attribute a score to each feas-
ible assignment based on its compatibility with the locations
of the helices in 3D-space.

In principle, a TM segment can be assigned to a helix in
3D-space with its N- and C-termini on the inner and outer
sides of the membrane, respectively, or vice versa. How-
ever, it is possible to resolve this ambiguity experimentally.
Hence, the number of all the assignments is n!. A brute-
force approach would require the generation of all these
assignments. To reduce this immense computational burden,
at the outset we exploit the maximal lengths of the extra-
membrane segments to filter out impossible assignments.
Suppose we want to match two consecutive segments Ti and
Ti+1 to the helices, Ck and Cm, correspondingly, such that
the extra-membrane segment Xi lies on the external side of
the membrane. A necessary condition for this assignment to
be valid is that the maximal length of the extra-membrane
segment [max_dist(Xi)] is longer than the distance between
external(Ck) and external(Cm). In the same manner, if Xi

should connect the helices on the internal side of the mem-
brane, its maximal length should be larger than the distance
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between internal(Ck) and internal(Cm). Consequently, if this
condition does not hold, the assignment should be ignored
from the outset.

2 THE ALGORITHM
Our algorithm proceeds in two stages: Pruning by Distance
Constraints—construction of an assignment graph that con-
tains only the set of feasible assignments, i.e. assignments in
which the maximal lengths of the extra-membrane segments
are longer than the distances between the helices that they con-
nect (Fig. 1). This stage is followed by Ranking the feasible
assignments—attributing scores to the feasible assignments
based on their compatibility with the locations of the helices
in 3D-space.

2.1 Pruning by distance constraints
We wish to filter out as many assignments as possible, without
eliminating the right one. For this purpose, we construct a
directed acyclic graph G(V , Eint ∪ Eext), such as the one in
Figure 1c, where:

V = {(Ti , Cj ) | 1 ≤ i, j ≤ n},
Eint = {(Ti , Cj ) → (Ti+1, Cm) |

dist[internal(Cj ), internal(Cm)] ≤ max_dist(Xi)} ,

Eext = {(Ti , Cj ) → (Ti+1, Cm) |
dist[external(Cj ), external(Cm)] ≤ max_dist(Xi)},

where V stands for the vertices and E stands for the edges
in G. There are two kinds of edges in G: external (Eext) and
internal (Eint). There is an edge e ∈ Eext, if and only if the two
consecutive TM segments Ti and Ti+1 can be matched con-
gruently to Cj and Cm. Namely, the extra-membrane segment
Xi between Ti and Ti+1 is sufficiently long to connect the two
points external(Cj ) and external(Cm) on the external side of
the membrane. The same applies to the Eint edges where Xi

is sufficiently long to connect internal(Cj ) and internal(Cm)

on the internal side of the membrane.
We construct G in a bottom-up fashion, i.e. the levels

in G are constructed from the n-th to the 1st level (where
n is the number of TM segments in the protein). The k-th
level in the graph consists of vertices comprising Tk , namely
{(Tk , Cj ) | 1 ≤ j ≤ n}. Given the set of nodes {(Tk , Cj ) | 1 ≤
j ≤ n} in the k-th level, we construct the (k − 1)th level as
follows. For each vertex (Tk , Cj ), we go over all the helices
Ct ∈ C\{Cj } and if Xk−1 can connect the two helices Ct and
Cj on the external or internal side of the membrane, we add
the vertex (Tk−1, Ct) (if it is still missing) to the (k − 1)th
level, and a directed edge e = [(Tk−1, Ct), (Tk , Cj )], where
e ∈ Eext or e ∈ Eint. Thus, a directed edge e ∈ {Eext ∪ Eint}
can appear only between two consecutive levels. At the begin-
ning, all the vertices (Tn, Cj ) in the n-th level are examined
against the pairs (Tn−1, Ct) where Ct ∈ C \ {Cj }, and created
if and only if the above condition holds. After construction of

the graph G we can eliminate all the nodes between the second
to the n-th level that do not have at least one entering edge.

A path π = {v1, e1, v2, e2, v3, . . . , en−1, vn} in the graph G

is considered valid if it starts at the first level of G, ends at the
n-th level of G, and is comprised of an alternating sequence
of external and internal edges (either {ek | k even} are external
and {ek | k odd} are internal, or vice versa). In addition, we
require that π does not contain two vertices with the same
helix [the Ck’s in all the vertices vi = (Ti , Ck) are distinct].
Each valid path π defines a feasible assignment between the
TM segments of S and the helices in C. It will be shown that
this pruning phase eliminates many infeasible assignments
when the protein contains short loops (namely, loops whose
lengths are <6).

2.2 Ranking the feasible assignments
In the following stage, a score is assigned to the feasible
assignments that are stored in G based on the suitability
of the loops to connect helices in the structure. Each feas-
ible assignment is a permutation σk , which assigns the TM
segments T1, . . . , Tn to the helices Cσk(1), . . . , Cσk(n), where
1 ≤ k ≤ n!. We define the score function F of a permutation
σk as follows:

F(σ k) =
n−1∑

i=1

f [Xi , Cσk(i), Cσk(i+1)],

where f scores the suitability of assigning the consecutive TM
segments Ti and Ti+1 to helices Cσ(i) and Cσ(i+1). Namely,
f defines the feasibility of connecting the two helices in 3D-
space by Xi .

The problem of adjusting an extra-membrane segment to
connect two fixed secondary structures is related to the well-
known kinematics problem of loop-closure (Canutescu and
Dunbrack, 2003; Manocha and Zhu, 1994; Wedemeyer and
Scheraga, 1999; Wojcik et al., 1999; Xiang et al., 2002). How-
ever, our problem is slightly different. We wish to rank the
assignments instead of predicting the conformations of the
extra-membrane loops as in the classic loop-closure problem,
since the native extra-membrane segments that connect pairs
of helices are unknown. Hence, we seek to define a score
for matching an extra-membrane segment to connect a given
pair of helices in a way that the native match is assigned the
highest score.

The evaluation of f is based on the length of the
extra-membrane segment Xi and on a statistical ana-
lysis we have conducted on solved structures of sol-
uble proteins taken from the Protein Sequence Culling
Server (http://www.fccc.edu/research/labs/dunbrack/pisces/)
in a preprocessing phase. We restricted our survey to pro-
tein sections comprised of two consecutive helices with a
loop region between them, namely to helix–loop–helix motifs,
where secondary-structure elements are assigned according to
DSSP (Kabsch and Sander, 1983).
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2.2.1 The preprocessing phase. We denote the two consec-
utive helices from the N - to the C-terminus in a helix–loop–
helix motif, by A and B, and the loop region which connects
them by L, and set l = length(L). Let us examine the helix–
loop–helix motifs with the same loop length l (2 ≤ l ≤ 7).
All of these motifs (A, L, B) were placed in a common ortho-
gonal reference frame, so that the helices A of all the motifs
overlap. Transforming these motifs to the common reference
frame yields a set of points in 3D-space each of which corres-
ponds to the location of the beginning of the second helix in
the helix-loop-helix motifs (i.e. B’s) relative to the common
first helix (i.e. the overlapping A’s).

All these starting points, denoted by pi (1 ≤ i ≤ N , where
N is the number of helix–loop–helix motifs), were stored in a
KD-tree data structure1. Since the lengths of the loops in these
motifs have a great impact on the locations of the points, pi’s,
in 3D-space, these points were stored in 6 distinct KD-trees
which we denote by KDl , 2 ≤ l ≤ 7, one tree per length l. Our
results indicate that these points are distributed non-uniformly
in 3D-space. For an illustration, Figure 2 shows the starting
points in the common reference frame for l = 3 and l = 4.

2.2.2 The scoring phase. We compute f [Xi , Cσk(i),
Cσk(i+1)] as follows. We place the two helices Cσk(i) and
Cσk(i+1) in the common orthogonal reference frame in the
same manner as we have done in the preprocessing phase, and
obtain the new starting point q of the helix Cσk(i+1). Given q

and the starting points of helix–loop–helix motifs with loop
length x = length(Xi) from the preprocessing phase, the
score depends on two criteria: the number of neighboring
points in the vicinity of q and the distances between these
points and q.

Let Q be a cube centered at q with side size (10 · x) Å. We
query KDx to find the points that were stored in the prepro-
cessing phase which occur in Q. Q represents the region in
3D-space for the clusters of points in the appropriate KD-tree
we wish to examine. The score for this assignment is based
on the sum of the distances between q and the derived points
that were found inside Q. The score was constructed with the
aim of favoring loops that have been observed many times in
the protein database we have used. It is, therefore, defined in
the form of a colony function (Xiang et al., 2002), whereby
loops in the database that are similar to the query make a
more significant contribution to the loop’s score. Formally,
f (Xi , Cσk(i), Cσk(i+1)) = ∑

r∈Q e−dist(q,r).
When x ≥ 8, we do not obtain significant information about

the quality of the assignment due to the low frequency of
occurrence of long loops in the helix–loop–helix motif in the
specified protein database. Thus, for length(Xi) ≥ 8, we have
set f [Xi , Cσk(i), Cσk(i+1)] = 0.

1KD-trees are orthogonal range-search structures. They are used to store a set
P of points in Rd so that the subset of P inside a query axis-aligned hyperbox
can be reported efficiently for details, (see de Berg et al., 2000).

Table 1. Helix–loop–helix motifs classified by loop length

Loop length Number of motifs

2 456
3 260
4 171
5 167
6 98
7 36

Helix–loop–helix motifs derived from the Protein Sequence Culling Server and classified
by their loop lengths.

Given the assignment graph G that was generated in the
pruning phase, we assign a weight, weight(e) = f [Xi , Cσ(i),
Cσ(i+1)] to each edge in the graph, namely to each e = (u, v)

where u = [Ti , Cσ(i)] and v = [Ti+1, Cσ(i+1)]. G is an acyclic
directed weighted graph. Each valid path in G defines a feas-
ible assignment, and its score is the sum of the weights of the
edges in the path, i.e. F(π) = ∑

e∈π weight(e).

3 THE DISTRIBUTION OF END POINTS OF
SHORT LOOPS IS HIGHLY NON-UNIFORM

Structures of helix–loop–helix motifs (resolution of 2 Å
or less, and R-factor of 0.3 or less) of soluble pro-
teins were selected from the Protein Sequence Culling
Server (http://www.fccc.edu/research/labs/dunbrack/pisces/).
To reduce the bias inherent in the PDB, only proteins whose
sequences were <20% identical were selected. The second-
ary structures were assigned by DSSP (Kabsch and Sander,
1983). We looked only at helix–loop–helix motifs containing
two helical regions of at least 8 amino acids each, which are
connected by loops of lengths 2–7 amino acids (Table 1). The
order of the two helices was specified from the N- to the C-
terminus. Entries were classified by the loop lengths. Each
loop of length l (where 2 ≤ l ≤ 7) contributed to our ana-
lysis a point in 3D-space corresponding to the beginning of
helix B. The distribution of the examined points in the com-
mon reference frame for short loops (i.e. lengths three and
four) is shown in Figure 2. Loops longer than seven were not
considered, due to their low frequency of occurrence in our
dataset.

The scoring function is greatly dependent on this protein
database analysis. To understand why our scoring function
performs well (as indicated by the results reported below),
consider for example the case where l = 4 (Fig. 2d–f), i.e. the
loop L has four Cα’s. In this case, L has 8 degrees of free-
dom (each Cα contributes two degrees of freedom φ and ψ).
By sheer kinematics considerations, if we fix one end of the
loop, the reachable space by the other end (we refer to it as
the free end) is large, practically limited only by the stretch
of the loop (the conformation that has the largest diameter).
However, Figure 2d–f show that the locus of the free end in
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Fig. 2. The distribution of the starting points of helices B in 3D-space derived from the helix–loop–helix motifs (A, L, B) with loop lengths
3 (a–c) on the left and 4 (d–f) on the right. The black spot marks the origin of the common reference frame. (a) and (d) display the points
together with their least-mean-square (LMS) plane. The view point of (b) and (e) is the normal to the LMS plane. (c) and (f) present side
view. It can be seen that the starting points of helices B in motifs with loops of length three form a torus-like shape in 3D-space.
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Table 2. The performance of the two-stage (pruning and scoring) algorithm using accurate and noisy data

Name PDB Loop lengths nh npos (i) Accurate (ii) Noisy
nfeas Rank nfeas Rank

Bacteriorhodopsin 1c3w 3,14,2,3,10,4 7 5040 44 3 948 13
Sensory rhodopsin 1h68 7,12,2,3,3,4 7 5040 84 2 512 48
Cytochrome c oxidase 1occC 3,5,19,2,7,7 7 5040 74 7 335 62
Cytochrome c oxidase 1occE 5,6,1,1 5 120 2 2 2 1
Cytochrome c oxidase 1occH 7,2 3 6 4 1 6 1
Glycerol facilitator 1fx8 6,19,24,8,4 6 720 236 8 352 119
Halorhodopsin 1e12 2,20,2,4,1,5 7 5040 34 5 73 22
Lactose permease 1pv6 3,2,1,3,1,24,3,1,3,1,1 12 >108 7 3 12 1

Classification and comparison of the results using (i) accurate helix positions derived from the PDB and (ii) noisy data. The set of TM proteins of known 3D structures that were
studied are indicated by their names and PDB entries. The subunit is indicated by the last letter. The proteins are classified by the number of TM helices (nh), their loop lengths, and
the number of possible assignments npos = nh!. The results are categorized by the number of feasible assignments (nfeas) that remained following the pruning phase and by the rank
of the native assignment. We ran the program on PC Intel Pentium IV, CPU 2.4 GHz, 256 MB RAM, and the running time using the accurate data was below 2 s for each of the
proteins. When using the noisy data, the running time varied between 8 s for 1occ subunit H and 6.5 min for 1pv6. Currently we are working on additional TM proteins. The results
obtained from processing these cases are available at http://www.cs.tau.ac.il/~angela.

length-four loops connecting two helices is limited to a few
clusters of points in 3D-space. Our scoring takes advantage
of this phenomenon, which is highly significant in loops of
lengths two through five, but is still substantially noticeable
in loops of lengths up to seven.

4 IMPLEMENTATION
We verified the scoring function by applying it to eight TM
protein chains, whose structures were solved using X-ray
crystallography (Table 2). We restricted our study to those
chains, whose TM segments did not contain half-helices or
loops (except for the glycerol facilitator, as discussed below).
Moreover, we did not consider proteins that contain long extra-
membrane segments that could form large domains. It should
be noted that the results reported below were derived solely
from the solved structures of TM proteins.

The algorithm has been implemented for two distinct cases:
(i) using accurate data of the locations of helices as derived
from the PDB and (ii) using noisy data, i.e. uncertainty with
regard to the positions of the helices. In case (i), the algorithm
assumes that the helices are located and oriented in their nat-
ive conformations. In case (ii), the algorithm assumes that
the orientations and locations of the helices are known only
approximately. However, in real cases, thanks to the cryo-
EM data, we will know that the native helices are located
in bounded regions. Therefore, we examine all the possible
orientations and locations of the helices in these bounded
regions. The exact definition of these regions is provided in
Appendix A.

The two implemented cases (using accurate and noisy data)
are examined in Table 2 by the number of feasible assign-
ments that remain after the pruning phase and by the rank
of the score of the native assignment with respect to other
assignments. In most of the examined TM proteins, the
table shows that the native assignment ranks highly, which

implies that the combination of the pruning and scoring
phases yields a reliable tool for assigning TM segments to
helices.

For example, bacteriorhodopsin (1c3w) is comprised of
7 helices, and thus has 7! = 5040 possible assignments. The
number of feasible assignments that remained after the prun-
ing phase is 44. Applying the score function and sorting all
the 44 assignments by their scores, the native assignment was
ranked third. When using the noisy data, the list of feasible
assignments expanded, but the rank of the native state (13) did
not change dramatically, which implies that our score function
deals well with this level of noise.

The strength of the pruning phase is clearly shown for the
lactose permease (1pv6), where out of 479 million possible
assignments, the number of feasible assignments in both cases
(i and ii) was below 13 and the running time was relatively
short since the assignment graph ruled out many assignments
which were not examined. Our method yielded poor results for
the glycerol facilitator (1fx8) due to a 24 residue loop which
contains a half TM helix. It is rather encouraging that even in
this pathological case the algorithm removed approximately
half of the potential assignments (352 out of 720) and ranked
the native state as 119.

5 DISCUSSION
A novel method for assigning TM spans in the sequence of
an integral membrane protein to the approximate locations
of the helices in 3D-space was presented here. Each of the
possible assignments is evaluated based on the compatibility
of the extra-membrane segments with the suggested relative
locations of the helices. Our results show that in TM pro-
teins with extra-membrane segments of seven residues or less,
the vast majority of the putative assignments can be rejected
from the outset, since they involve the connection by short
loops of pairs of TM helices that are spatially distant from
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each other. In the lactose permease, for instance, only 12 out
of 479 million putative assignments were found to be feas-
ible based on this criterion. The significant reduction in the
number of assignments is due to the short lengths of the extra-
membrane segments. It demonstrates that, in practice, the
complexity of the TM helix-assignment problem scales with
the lengths of these segments rather than with the number of
TM helices.

The feasible assignments are then screened based on the
suitability of each of the extra-membrane segments to adopt a
conformation that could connect the adjacent TM helices. This
is done using a novel knowledge-based score function that
was derived from the conformations of loops in helix–loop–
helix motifs. Our results show that this function ranks the TM
helix assignment of the native structure high among the other
feasible assignments. This is best demonstrated with chain H
of the cytochrome c oxidase, where the native structure ranks
first among the feasible assignments.

In the typical case, the locations of the TM helices in 3D-
space will be determined using medium-resolution data, e.g.
from cryo-EM studies at in-plane resolutions of 5–10 Å. At
such resolution, one can only derive the approximate loca-
tions of the TM helices in 3D-space. The method is robust to
changes in the locations of the TM helices; the native-state
assignment ranks high among the feasible assignments, even
when using noisy data (Table 2).

Our results are very encouraging in that the problem of
TM helix-assignment is significantly reduced, and yet in the
typical case, the analysis is likely to result in several putat-
ive assignments rather than only one. We anticipate that the
set of potential assignments may be further reduced based on
available empirical data, e.g. from biochemical, molecular
biology and genetic studies. Finally, forward-looking experi-
ments may be designed to select the native assignment out of
a few possibilities.

The application of the method to oligomeric TM pro-
teins, such as cytochrome c oxidase may complicate the
analysis. In the present study, the subunit boundaries were
taken as a given, but, if these are unknown, it may
be necessary to examine various molecular boundaries,
which would entail an increase in the dimensionality of the
problem.

To demonstrate the method’s usefulness we are applying
it to the assignment of the TM helices in the microsomal
glutathione transferase 1 (MGST1) (Jakobsson et al., 1999).
MGST1 is a homotrimer, in which each monomer is com-
prised of four TM segments. The 3D structure of MGST1
was determined at an in-plane resolution of 6 Å using cryo-
EM (Holm et al., 2002; Schmidt-Krey et al., 2000). The
electron-density map shows 3 repeats of 4 rod-like densit-
ies, which presumably correspond to the 12 TM helices of
the homotrimer. Our preliminary results show that only a
few assignments are consistent with the structure (data not
shown).
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APPENDIX A: DEALING WITH THE
UNCERTAINTY IN CRYO-EM DATA
Cryo-EM studies at 5–10 Å in-plane resolution provide only
the approximate locations of the helix-axes positions and ori-
entations. The uncertainty in 3D-space is mainly due to two
reasons (Fig. A1): (i) the unknown orientation of the helix
with respect to its axis and (ii) the unknown translation of the
helix along its axis.

We now redefine the score function f (Xi , Cσ(i), Cσ(i+1))

that was introduced in Section 2.2 to account for the noisiness
of the data. For simplicity, we assume that Xi should con-
nect the two helices in the external side of the membrane. We
denote by p′ and q ′ the native positions of the external Cα

atoms of helices Cσ(i) and Cσ(i+1), respectively. The above
uncertainties may affect f dramatically, since it strongly
depends on the points p = external [Cσ(i)] and q = external
[Cσ(i+1)], whose locations are known only approximately.

Fig. A1. Determining the location of a helix in cryo-EM data
involves two types of uncertainties: (i) the exact orientation of the
helix with respect to its axis is unknown and (ii) its location along
the axis normal to the membrane plane is inaccurate due to the poor
resolution along the axis.

However, the locations of p′ and q ′ are restricted to bounded
regions as shown below.

Let us examine the surface where p′ can possibly be loc-
ated accounting for the imprecision in the model. We call
this surface the envelope of p and denote it by E(p) (the
same discussion applies to q ′). E(p) is defined as follows
(the numbering corresponds to the numbers of the reasons for
imprecision): (i) p′ can be located on a circle in 3D-space
centered at the helix axis (Fig. A1, i); (ii) p′ can be located in
the range [p−v ·2.5, p+v ·2.5] where v is the unit vector that
coincides with the helix axis toward the external side of the
membrane (Fig. A1, ii). It follows that E(p) has a cylindrical
envelope shape with radius 2.5 Å (typically, radius of a helix)
and its height is set to 5 Å.

Given p and q as specified above, each pair of points
pk ∈ E(p) and qj ∈ E(q), can be regarded as the
external Cα atoms of the native helices. We pick uni-
formly distributed random points pk ∈ E(p) and qj ∈
E(q) and transform the helices Cσ(i) and Cσ(i+1) so that p

and q will coincide with pk and qj , respectively (without
changing their axes’ directions). The transformed helices
are denoted by Tk[Cσ(i)] and Tj [Cσ(i+1)]. To account for
this imprecision, we modify the score function f to be:
maxPk∈E(p),q−j∈E(q)f (Xi , Tk(Cσ(i)), Tj (Cσ(i+1)).

It can be shown that in order to cover the envelope E(p)

adequately, we need to sample 135 points on E(p). By
adequately we mean that with high probability (>0.98), the
native point p′ will be at distance ε = 1 Å at most from at
least one of the samples points in E(p).
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