TABLE 8.1 Binding energies and corresponding dissociation constants of different protein-ligand complexes. | Protein | Ligand | Binding Energy
(kcal/mol) | Dissociation Constant (Kd) (Molar) | |----------|---|---|--| | Antibody | Antigen | -6 to −11 ^{[54]*a} | $\sim 10^{-2} \text{ to } 10^{-8}$ | | Receptor | Hormone | ~-12 [42] | ~10 ⁻⁹ | | Enzyme | Substrate Cofactor Inhibitor Transition state | -4 to -8 ^[55] -5.5 to -9.5 ^[42] -10 to -15 ^{[54]*b} -16 to -27 ^{[54]*c} | $\sim 10^{-3} \text{ to } 10^{-6}$ $\sim 10^{-4} \text{ to } 10^{-7}$ $\sim 10^{-7} \text{ to } 10^{-11}$ $\sim 10^{-12} \text{ to } 10^{-20}$ | ^{*}aA higher value ($-14 \,\text{kcal/mol}$ ($Kd \approx 10^{-10}$)) was obtained for antibodies that underwent a process called 'maturation'. In this process, B-cell lymphocytes adapt to the invading pathogen by producing antibodies with better compatibility with the antigens produced by the pathogen. ^{*}bA similar, yet slightly higher value of ≈ -18 kcal/mol (Kd = 60 fM) was measured for the binding of trypsin to pancreatic trypsin inhibitor, which is itself a protein [47]. ^{*}cHigher values have also been suggested. For example, Schramm [56] indicated an enzyme-transition state dissociation constant (Kd) ranging from 10^{-14} to 10^{-23} mol L⁻¹. This corresponds roughly to a binding free energy of -19 to -31 kcal/mol.