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ABSTRACT

Motivation: Programs that evaluate the quality of a protein structural
model are important both for validating the structure determination
procedure and for guiding the model-building process. Such
programs are based on properties of native structures that are
generally not expected for faulty models. One such property, which
is rarely used for automatic structure quality assessment, is the
tendency for conserved residues to be located at the structural core
and for variable residues to be located at the surface.
Results: We present ConQuass, a novel quality assessment program
based on the consistency between the model structure and
the protein’s conservation pattern. We show that it can identify
problematic structural models, and that the scores it assigns to the
server models in CASP8 correlate with the similarity of the models
to the native structure. We also show that when the conservation
information is reliable, the method’s performance is comparable
and complementary to that of the other single-structure quality
assessment methods that participated in CASP8 and that do not
use additional structural information from homologs.
Availability: A perl implementation of the method, as well as the
various perl and R scripts used for the analysis are available at
http://bental.tau.ac.il/ConQuass/.
Contact: nirb@tauex.tau.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The function of a protein is largely determined by its 3D structure.
Therefore, the determination of a protein’s structure is an important
step in understanding how the protein achieves its function,
and it can also aid in predicting protein function or designing
experiments. However, experimental structure determination can
be a long and difficult procedure, and naturally errors may occur
(Kleywegt, 2009). This was recently demonstrated when several
protein structures published in the Protein Data Bank (PDB) were
discovered to be erroneous (Chang et al., 2006). Even when
the structure determination process is correct, the determined
structure may adopt a non-physiological fold, for example, due to
non-physiological constraints imposed by the crystal in the case
of X-ray crystallography. Such errors can cause confusion and
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mislead further research, so it is important to be able to spot
them before the structures are published. Errors are even more
frequent in computationally derived structures, which are built
either by extrapolating from a homologous protein whose structure
is already solved (Fiser and Sali, 2003; Ginalski, 2006) or by
computer simulation (Das and Baker, 2008; Zhang and Skolnick,
2004). In the latter case, many alternative conformations might
be generated during the simulation, and differentiating between
erroneous conformations and structures that are more likely to
be correct could help guide the simulation and limit the search
space. Programs that try to numerically assess the correctness of
a given structural model for a protein are called Model Quality
Assessment Programs (MQAPs). The need for such programs
is widely recognized by the structural biology community, as
evidenced by the inclusion of a category for assessing MQAP
performance in the biennial Critical Assessment of Techniques for
Protein Structure Prediction (CASP) experiment, starting from its
seventh round (CASP7; Cozzetto et al., 2007).

The two pioneering MQAPs, still widely used today, are Verify3D
(Eisenberg et al., 1997) and ProSa (Wiederstein and Sippl, 2007).
Both methods check the compatibility between the protein’s
structure and its sequence. Verify3D, for example, classifies each
residue in the protein into one of the 18 classes according to the
residue’s structural environment in the input model. The propensity
of each amino acid to exist in each such structural environment class
is calculated according to statistics collected from structures in the
PDB, and the final score given to the protein structure is the sum of
propensities of the individual residues.

Newer MQAPs were recently assessed in the blind experiments of
CASP7 (Cozzetto et al., 2007) and CASP8 (Cozzetto et al., 2009).
The models given as input to the MQAPs were the ‘server models’,
which are generated by the various servers participating in CASP
shortly after the round starts, and long before the native structures are
published. Many of the participating MQAPs, including QMEAN
(Benkert et al., 2009) and MULTICOM-REFINE (Cheng et al.,
2009), functioned similarly to Verify3D and ProSa, receiving only
one structure as input and assigning it a quality score based on
the compatibility of various features computed from the sequence
with the predicted 3D structure. However, the most successful
MQAPs in CASP8 were the consensus-based methods, such as
Pcons (Larsson et al., 2009) and ModFOLDclust (McGuffin, 2009),
which used as input the entire decoy set instead of just coordinates
of a given model and took a consensus approach to rate each model
according to how similar it was to the other structures in the set.
This approach, while clearly advantageous in the setting of the
CASP experiment, is not applicable in many scenarios in which
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few structures (possibly only one) are available, or when the decoy
set is not likely to contain many correct models (Cozzetto et al.,
2007; Wallner and Elofsson, 2008). The single-structure MQAPs
that performed best in CASP8 were LEE and LEE-server. The
group produced their own structural model for each target and
ranked the decoys according to how similar they were to their
model (Cozzetto et al., 2007). The models produced by the LEE
group were homology based, so at least part of the success of
the method could be attributed to the fact that it used additional
constraints from structural models of homologous proteins. Two
other methods from CASP8, SAM-T08-MQAU and SAM-T08-
MQAO (Archie et al., 2009), also used such constraints taken from
structural homologs, and they also performed significantly better
than the rest of the single-structure methods. While homology-based
approaches have proven very promising, they are only usable when
reliable structural homologs exist. Therefore, there is still a need for
devising methods that do not use additional structural information,
neither from structural homologs nor from the other decoys. We term
such methods ‘pure single-structure MQAPs’.

An alternative strategy to that of most single-structure MQAPs
is to check the compatibility of the suggested 3D structure with
the evolutionary conservation pattern of the sequence. There are
various ways to calculate the conservation level (or evolutionary
rate) of an amino acid position (Glaser et al., 2003; Mihalek
et al., 2004). A residue that is conserved throughout evolution
has undergone strong purifying selection; this suggests that the
conserved residue is important for the protein’s normal function
(Brändén and Tooze, 1999). This observation has been used in
many applications, such as identifying the active site of a protein,
which is usually composed of a patch of clustered residues on the
protein’s surface (Nimrod et al., 2008). An interesting observation
is that for most proteins, the structural core is composed mainly of
such conserved residues (see for example, Fig. 1A). These residues
are usually not involved directly in the mechanism of the protein’s
function. Rather, they are conserved because a mutation in such a
buried residue would tend to perturb the architecture. The protein
surface, in contrast, is mostly variable. If the association between
residue accessibility and conservation level is strong enough, it
might be used to differentiate between correct and incorrect model
structures, as incorrect structures are unlikely to feature this pattern
by chance.

This conservation pattern has been used for computational
modeling of proteins, both manually for checking the validity of a
built model (Landau et al., 2007) and automatically for generating a
Cα model of transmembrane proteins starting from a low-resolution
cryo-EM map (Fleishman et al., 2004a, b, 2006). Conservation
information has also been used for quality assessment in several
studies.

The first conservation-based approach is to use the observation
that conserved residues tend to be clustered in the native structure
(Mihalek et al., 2003; Muppirala and Li, 2006; Schueler-Furman
and Baker, 2003). This clustering is expected both for structurally
conserved residues, as they form the structural core, and for
functionally conserved residues, which are usually localized on the
surface, at the functional site of the protein. Mihalek et al. (2003)
used the evolutionary trace method to collect a set of conserved
residues and quantified the set’s tendency to cluster using a measure
they termed the selection clustering weight (SCW). They applied this
method to the Decoys ‘R’Us decoy set (Samudrala and Levitt, 2000)

Fig. 1. Tendency of conserved residues to be buried in correct structures.
(A and C) The native structure for the CASP7 target T0289 (Aspartoacylase,
PDB 2gu2A) in (A), and a poor model for the same target (model
FPSOLVER-SERVER_TS1, GDT-TS = 7.9) in (C), colored by the ConSurf
color map using the ConSurf-DB database. ConSurf colors 1–7 are
semitransparent to show the cluster of conserved residues buried at the
structural core in the native structure. (B and D) Distribution of relative
residue accessibilities as calculated by Naccess for variable residues (cyan;
ConSurf classes 1, 2, 3) and for conserved residues (purple; ConSurf classes
8, 9). The distributions are shown for the native structure in (B) and for
the poor model in (D). (E) Distribution of relative residue accessibilities
for all residues of all structures in the dataset, classified by their ConSurf
conservation grades. The different grades are colored according to the
ConSurf color scheme. There is a consistent shift to the right, with the most
variable residues (ConSurf class 1) being most accessible. Molecular graphic
images were generated using UCSF Chimera (Pettersen et al., 2004).

and showed that indeed 78.1% of the decoys in the set were
assigned a lower (less favorable) SCW score compared with the
native structure. However, the assessment of a method by its
ability to rank a native structure higher than decoys has been
shown to be problematic (Handl et al., 2009). Schuler-Furman and
Baker (Schueler-Furman and Baker, 2003) took a similar approach,
adopting a simpler strategy for selecting the set of conserved residues
based on entropy, as well as a different measure for quantifying
the clustering. However, they validated their method in a more
relevant scenario, showing that when the method is used to select
decoys generated by ROSETTA (Das and Baker, 2008), there is a
statistically significant enrichment in correct models.

The second approach to exploit conservation data is to use
it initially to make contact predictions and subsequently use the
predictions for quality assessment. Olmea et al. (1999) provided
a set of contact predictions, using the observation that in pairs of
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conserved residues, as well in pairs of residues whose mutations are
correlated, the members of the pair tend to be spatially close to each
other in the 3D structure. They have shown that such predictions
are usually more precise for native structures than for deliberately
misfolded ones. They also used this information as a post-processing
step in a threading method and showed that it improved the method’s
results. More recently, Miller and Eisenberg (Miller and Eisenberg,
2008) built an MQAP based on the agreement between such contact
prediction information and the set of contacts in the proposed model.
They checked their method on several of the CASP7 targets and
proved that it performed significantly better than random.

While previous studies have suggested that evolutionary
information can be used for quality assessment, the performance
of these methods was never compared with that of other MQAPs.
Furthermore, these methods only used the tendency of conserved
residues to be spatially close to one other, which captures only
partially the information that is present in the conservation–
accessibility relation. In this study, we present a new very simple
MQAP called ConQuass (conservation-based quality assessment),
which is based on the correlation between each residue’s degree
of evolutionary conservation and its accessibility in the structure.
We check the performance of ConQuass on the CASP8 dataset, and
show our method to be comparable to the other pure single-structure
MQAPs that participated in CASP8. We also show that ConQuass
is complementary to existing methods and could potentially be
integrated with them to improve their performance.

2 METHODS

2.1 Collecting a training set of known structures
The PISCES server (Wang and Dunbrack, 2003) was used to collect a non-
redundant set of X-ray, full-atom protein structures from the PDB that have
resolution better than 3.0 Å, R-factor better than 0.3 and sequence identity
<25%. This resulted in a set of 6132 protein chains. Of those, we used
only the 5648 proteins for which evolutionary conservation information was
available in the ConSurf-DB database (Goldenberg et al., 2009).

We generated three structures for each protein chain. The first contained
only the given chain in isolation, without the other chains in the PDB
structure. In addition, two versions of the chain in the context of its biological
unit were generated using either the protein quaternary structure (PQS)
server (Henrick and Thornton, 1998) or the progressive iterative signature
algorithm (PISA) server (Krissinel and Henrick, 2007). Non-protein chains
were removed. Finally, we removed each protein whose complex contained
>26 protein chains and eliminated protein structures that were too big to run
in Naccess (Hubbard and Thornton, 1993), leaving a total of 5543 proteins
in the final set.

2.2 Features collected for each structure
2.2.1 Conservation We collected the conservation level of each residue
from the ConSurf-DB database (Goldenberg et al., 2009), which provides
precalculated conservation profiles for every structure in the PDB. These
profiles assign each residue to one of nine conservation levels, with 9 being
the most conserved and 1 being the most variable. For some residues, the
information in the multiple sequence alignment is not enough to compute
the conservation level (for example, if that position consists mostly of gaps).
In these cases, ConSurf-DB assigns the residue value of ‘insufficient data’.

2.2.2 Accessibility We used the program Naccess to calculate the total
relative accessibility for each residue (Hubbard and Thornton, 1993). We
further normalized these accessibility values by transforming them into
quantiles, so that the most buried residue in a given protein would get the

value 0 and the most exposed would get the value 1. This normalization was
done in light of the observation that some protein structures might overall be
more accessible than others owing to their geometric properties, but within
a single structure conserved residues still tend to be more buried compared
with other residues in the same structure. Each residue was then classified
into one of ten evenly distributed accessibility classes.

2.2.3 Structure quality features For each structure, we extracted the
resolution and the R- and free R-factors from the PDB as measures
of the general structure quality. This was done in order to validate our
assumption that the correlation between the level of burial and evolutionary
conservation of the amino acids would increase with the structure quality
(see Section 3.1.1).

2.2.4 Alignment quality features We collected the following measures
for each structure: (i) Nseq, the number of homologs in ConSurf-DB’s
alignment; (ii) Nseq20, the number of homologs in the alignment whose
identity is >20% [the level of identity for each homolog is extracted from
the PSI-BLAST output (Altschul et al., 1997), taken from ConSurf-DB]; (iii)
Resnum, the number of residues with significant conservation information;
(iv) %insig, the fraction of the protein residues whose conservation level is
assigned the value ‘insufficient data’. These features were chosen to reflect
the general quality of the alignment and evolutionary rates generated by
ConSurf-DB for each protein.

2.2.5 Finding the optimal filtering cutoffs The four measures of alignment
quality that we collected could each help predict in advance whether a given
protein would be well-suited for use with our method. To find the optimal way
to integrate these features, we solved the following optimization problem:
given a ratio X (called the filtering degree), find the optimal quadruple of
cutoffs such that when filtering the dataset according to these cutoffs, X
of the proteins in the dataset pass the filter, and their average ConQuass
score (as defined in Section 2.3) is maximal. This problem was solved for
each X in 0.01, 0.02,… ,1 using an exhaustive enumeration, enumerating for
each cutoff over 50 discrete values distributed evenly across the dataset. In
what follows we refer to proteins that passed the filter corresponding to a
given filtering degree X as having a ‘high-quality alignment, according to
the X-filter’, where a higher filtering degree corresponds to a more stringent
requirement.

2.3 The ConQuass score
Similarly to Verify3D (Bowie et al., 1991), we built a 10×9 propensity
matrix, where each cell gives the compatibility score for assigning a residue
with conservation class c an accessibility class a, as given by the information
value (Fano, 1961):

score(c, a)= ln

(
P(c|a)

P(c)

)

where P(c|a) is the probability of finding a residue of conservation class c
in the accessibility class a, and P(c) is the overall probability of finding a
residue in conservation class c. These probabilities are estimated using the
conservation and accessibility levels of the residues in the dataset of known
protein structures. The accessibilities were calculated using the biological
unit given by PQS. We also tried using the PISA biological unit or the isolated
chain, but the propensity matrices generated were very similar (data not
shown). The final propensity matrix is shown in Supplementary Table S1.

ConQuass assigns each structure the average score of its residues:

score(C, A)= 1

L

∑
score(Ci,Ai)

where C and A are vectors of the same length L (number of amino acids in
the protein), giving, respectively, the conservation and accessibility classes
of the residues.
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2.4 Assessment on the CASP dataset
In the model quality assessment category of CASP, the participating groups
were asked to rank the models built by the participating automatic servers.
We downloaded these server models, as well as the predictions of the
participating MQAPs, from the CASP web site (http://predictioncenter.org).
We also downloaded for each server model its global distance test total score
(GDT-TS) (Zemla, 2003), which is in the range (0, 100] and is the standard
quality evaluation score given by CASP.

For each CASP target, we downloaded conservation information, if
available, from the ConSurf-DB database entry for the native structure. The
same conservation information was aligned to all full-atom models of the
target, as there is sometimes a shift between the residue sequence numbers
in the native structures and in the CASP models. To this end, we ranked each
such alignment by giving each column a score of +1 if the residue identity
in the native matched that of the model, −2 if the residues did not match,
−1 for an insertion/deletion and 0 if the residue was missing in one of the
structures. The optimal alignment was then found using the Smith–Waterman
algorithm (Smith and Waterman, 1981). For each model, we computed the
accessibility class of each residue, as was done for the structures in the
training set (see Section 2.1). The conservation levels and accessibilities were
used to calculate the MQAP score for each model (see Section 2.3). We did
not score targets whose native structure had no ConSurf-DB information.

When comparing ConQuass to the MQAPs that participated in CASP7, we
considered only the 16 MQAPs that had ranked at least 15 000 models. For
MQAPs that participated in CASP8, we considered only the 22 pure single-
structure methods that had ranked at least 20 000 models. We restricted each
analysis to models that had been ranked by all considered methods (including
ConQuass), and from this set we eliminated targets for which fewer than 100
ranked models were available. For each MQAP and each target, we calculated
the Pearson correlation between the quality scores given by the MQAP and
the GDT-TS scores downloaded from the CASP web site.

2.5 Integration of ConQuass with other methods
To demonstrate that the conservation information used in ConQuass is
complementary to that used by other methods, we built three new MQAPs,
integrating the score given by ConQuass (Section 2.3) with the scores given
by Circle-QA (Terashi et al., 2007), QMEANfamily (Benkert et al., 2009)
and MULTICOM-REFINE (Cheng et al., 2009), respectively. We chose
Circle-QAbecause it was the leading pure single-structure method in CASP7,
and we chose QMEANfamily and MULTICOM-REFINE because they were
the leading pure single-structure methods in CASP8. For each integrated
MQAP, the score we assigned to each model was a simple linear combination
of the ConQuass score and the score produced by the other method (the
two scores were each assigned a weight of 0.5). The analysis described in
Section 2.4 was repeated for these three MQAPs. We compared the first
MQAP (integration with Circle-QA) to MQAPs that had participated in
CASP7 and compared the other two (integration with QMEANfamily or
MULTICOM-REFINE) to MQAPs that had participated in CASP8.

3 RESULTS AND DISCUSSION

3.1 Experimentally determined structures match their
conservation pattern

3.1.1 Examining a dataset of high-quality structures It is widely
recognized that residues buried in the protein core tend to be
evolutionarily conserved, whereas residues on the surface are
usually variable (Brändén and Tooze, 1999; Lichtarge et al., 1996).
This implies that the accessibilities of variable residues should be
shifted toward higher values in comparison with those of conserved
residues, as indeed seems to be the case for many experimentally
solved protein structures we examined (e.g. Fig. 1A and B). This
characteristic is expected for true protein structures, and we would

Fig. 2. ConQuass scores assigned to experimental structures from the PDB
and to a few erroneous models. The scatter plot shows the propensity score
of the protein versus the number of residues with ConSurf information for
all the structures in the dataset (in gray). Only structures that have ConSurf
information for at least 40 residues were included. Also shown are pairs
of incorrect (triangle) and correct (circle) structures for EmrE (black, 2f2m
and 3b5d), Connexin (gray, 1txh and 2zw3) and MsbA (white, 1jsq and
3b5w). For each of these structures, the ConQuass score was calculated for
the residues of all the chains in the biological unit. For models containing
only the Cα-trace, the full-atom structures were rebuilt using MaxSprout and
SCWRL4. The correct structure of MsbA (3b5w) was truncated to contain
the same set of residues as the erroneous structure (1jsq).

generally not expect to see it in incorrect models. Figure 1C
and D show the evolutionary profile of an extremely poor model
structure (analysis of an intermediate quality model of the same
protein is provided in Supplementary Fig. S1). We first set out to
measure the magnitude of this trend in real protein structures. For
that purpose, we collected a comprehensive dataset of high-quality
experimentally determined structures, which we can reasonably
assume to contain mostly ‘correct’ structures (Section 2.1). For this
dataset, it is obvious that the more variable residues are consistently
more accessible than the conserved residues (Fig. 1E).

The information in this dataset was used to calculate a propensity
matrix, giving the compatibility of each conservation class with
each accessibility class (Section 2.3, and Supplementary Table S1).
The matrix confirmed our intuitive expectations, giving high
propensity scores to accessible-variable residues and to buried
conserved residues. Consequently, the matrix was used to calculate
each protein structure’s ConQuass score, which was the average
of the propensity scores of the protein’s residues. A score
was calculated for each structure in the dataset (Fig. 2), using
the biological unit complexes as given by PQS (Henrick and
Thornton, 1998). Only 7.9% of the structures received a negative
score, meaning that for most structures the residues’ conservation
levels tended to be compatible with their accessibility levels.
However, when we determined scores for the individual chains
in the dataset without the context of the biological unit, more
structures were assigned a negative score (12.5%). This was
due to monomers exposing conserved interface residues that are
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Fig. 3. Compatibility of the structure with the evolutionary profile of the
protein is higher for higher-quality structures or higher-quality multiple
sequence alignments, as described by different quality measures. (A) The
mean ConQuass score of the proteins in the dataset when filtering only for
the top X proteins (x-axis), as measured by several crystallographic structure
quality measures: the R-factor, free R-factor and the resolution. (B) As in
(A), but when filtering by non-structural measures: the number of residues
(red), the number of homologous sequences in the alignment (black), the
ratio of residues with insignificant conservation information as measured by
ConSurf (green) and the number of homologous sequences in the alignment
with at least 20% identity with the query (blue). Also shown is the optimal
ratio achieved by integrating these four measures (gray).

actually buried in the physiological complex. We also tried to
determine scores for the biological unit complexes given by PISA
(Krissinel and Henrick, 2007) and the results were very similar
to those obtained for the PQS complexes (data not shown). The
ConQuass scores also seemed to become progressively higher for
structures of higher quality, as measured by various structure quality
measures such as resolution, R-factor and free R-factor (Fig. 3A).

The conservation data was calculated according to the multiple
sequence alignment generated automatically by ConSurf-DB, and
it is possible that a high-quality structure would be assigned a
low ConQuass score if an inadequate alignment was used. To
discern these cases, we collected four measures that are indicative
of the alignment quality or that could otherwise predict an incorrect
ConQuass score for a protein model (see Section 2.2.4). As can be
seen in Figure 3B, the ConQuass score becomes progressively higher
as the dataset is filtered to leave only structures whose alignment is
of higher quality according to any one of the four measures.

Obviously, a better indicator for how suitable a protein is for
ranking with ConQuass can be achieved by integrating the different
alignment quality measures. We used an exhaustive enumeration
to find the optimal way to integrate these measures, each time
filtering the database to leave only X% of the proteins such that
the mean ConQuass score of the remaining proteins is maximal
(Section 2.2.5). This procedure assumes that after filtering, a higher
mean ConQuass score is achieved because the remaining proteins
have a higher quality alignment. The integration achieves a much
higher mean ConQuass score than does filtering by each measure
separately (Fig. 3B; gray). The optimal cutoffs found for some
selected filtering degrees are shown in Supplementary Table S2.

3.1.2 The conservation profile may reveal incorrect structures
To test whether the ConQuass score is capable of discriminating
incorrect structures, we collected three examples of structural
models that had been deposited in the PDB but were later found
to be incorrect. All these structures also have corrected versions
available, which we also scored using ConQuass (Fig. 2).

The first two examples are EmrE (Fig. 2; black) and MsbA
(Fig. 2; white). Both structures were determined by Chang and
coworkers using a faulty piece of in-house software, which caused
the group to misinterpret the crystallization data and eventually
yielded false models. Following the detection of the error in the
software, the structures were retracted (Chang et al., 2006), and
corrected versions have since been published (Chen et al., 2007;
Ward et al., 2007). Calculating the ConQuass score for these
structures is not straightforward, as they are all Cα-only models,
with the exception of the erroneous EmrE structure. However, we
were able to apply ConQuass after reconstructing the full-atom
models using MaxSprout (Holm and Sander, 1991) and SCWRL4
(Krivov et al., 2009). Clearly, the correct structures are much more
compatible with their conservation pattern than are the incorrect
ones (Fig. 2).

The third example is the gap junction connexin channel (Fig. 2;
gray), which was previously modeled by our group using low-
resolution electron cryo-microscopy data (Fleishman et al., 2004b).
The helix assignment of the model recently turned out to be wrong
when an experimentally determined high-resolution structure of
a homologous protein was reported (Maeda et al., 2009). For
the purpose of comparing the two structures, we truncated the
non-membrane residues from the experimental structure and also
removed all non-Cα atoms. This procedure left us with two Cα-
only models composed of the same set of residues. We then rebuilt
the two full-atom models as above and scored them using ConQuass.
While both the truncation of non-membrane residues and the full-
atom reconstruction lowered the score for the crystallographic model
(data not shown), it was still assigned a much higher score than the
erroneous model (Fig. 2).

There are some cases in which a correct model seems not to match
its conservation pattern, as denoted by a negative ConQuass score.
However, a closer examination can usually provide an explanation
for the low score. Some representative examples are discussed in
Supplementary Section S1.1.

3.2 Ranking decoys in CASP
ConQuass may also assess how distant a given model is from the
native structure. To show this, we checked how ConQuass scores
models of varying quality for the same protein. A good source
for such models is the biennial CASP experiment (Moult et al.,
2009), where each round consists of several targets, corresponding
to proteins whose structure have recently been solved (but not yet
published), and each participant submits computational models in
an attempt to predict the structure of each target. At the end of the
round, the experimental structures are revealed, and the quality of
each submitted model is measured by the similarity measure GDT-
TS (Zemla, 2003), which is based on the superposition between
the model and the native structure. The seventh and eighth CASP
rounds included a quality assessment category (Cozzetto et al.,
2007, 2009), in which different MQAPs participated and were
consequently evaluated according to their performance. The models
scored by the MQAPs were server models that were generated by
the structure prediction servers participating in CASP and published
shortly after the round began. The MQAPs were evaluated according
to the correlation between the scores they gave the different models
and the quality of those models as measured by GDT-TS. The scores
given by the participating MQAPs are available for download from
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Fig. 4. The ability of the ConQuass score to rank decoys in the CASP8 dataset. (A) Demonstration for target T0449. For each decoy, the GDT-TS (similar
to the native structure) is plotted versus the ConQuass score. The vertical line is the ConQuass score assigned to the native structure. The Pearson correlation
for this target was 0.827. (B) Box plots of the correlation values for the 22 MQAPs that ranked at least 20 000 models. The number signifying each MQAP
(x-axis) is the number assigned in the original CASP8 experiment (see http://predictioncenter.org/casp8). Also shown is the box plot for the correlation values
of ConQuass (999, gray). The correlations were calculated only for models ranked by all 23 MQAPs. The box plots were sorted by the mean correlation,
indicated by the black dots. The figure is cut to show only the correlation range [0.5, 1] in order to make the differences between the methods more apparent
(the uncut version is shown in Supplementary Fig. S3). (C) Same as (B), when looking only at targets with the highest quality alignment, using the 20% filter.
Although ConQuass is ranked first here, the specific ordering of the top ranking methods is irrelevant, as the correlation values achieved by ConQuass are not
significantly higher than those achieved by MULTICOM-REFINE (013).

the CASP web site (http://predictioncenter.org), which allowed us
to compare them with ConQuass. The results for the CASP8 set are
presented below. The analysis of the CASP7 set showed a similar
performance, and it is presented in Supplementary Section S1.2.

To be able to best compare ConQuass with the other pure single-
structure methods, we have excluded from our analysis methods
that use structural data from the other decoys or from homologs
(a comparison of ConQuass with the latter methods is shown in
Supplementary Fig. S2). For brevity, we will use the term MQAP in
this section to refer only to pure single-structure methods.

3.2.1 Example of the performance on one CASP8 target As an
illustrative example, Figure 4A shows the GDT-TS values of the
server models of CASP8 target T0449, plotted as a function of the
assigned ConQuass scores. There is a striking correlation between
the score and the structure quality, and the set of highly scored
models was enriched with high-quality structures. The Pearson
correlation in this case was 0.827, and the score of the native
structure (Fig. 4A; vertical line) was higher than the scores of all
the decoys except three.

3.2.2 Overall performance on all CASP8 targets In our
calculation on the CASP datasets (see Section 2.4), we used the
conservation data recorded in the ConSurf-DB dataset. There are
cases in which the alignment could have been manually improved
in order to achieve a better performance, but we deliberately
refrained from doing this to avoid biasing our results. Four CASP8
targets could not be ranked, because their native structures did
not have any ConSurf-DB information. This usually happens when
ConSurf-DB cannot find enough homologs to construct a meaningful

alignment. Ten additional targets were cancelled by CASP8 or had
no corresponding native structure listed in the CASP8 web site.
A ConQuass score was given to each of the full-atom models of the
remaining 114 targets.

CASP allowed each participating MQAP to choose to rank any
subset of models, for any subset of targets. Indeed, many MQAPs are
not applicable for all models. This makes performance comparison
problematic. For example, it might be easier to assess the quality
of full-atom models, and if so an MQAP (such as ConQuass) that
ranks only such models would have an advantage over methods
that also rank Cα models. To avoid this problem, we carried out all
calculations on the set of 11 686 models and 75 targets that were
ranked by all participating MQAPs. To avoid excluding too many
models, only the 22 participating MQAPs that scored at least 20 000
models were used.

To evaluate the performance of each MQAP, we calculated for
each CASP8 target the Pearson correlation between the scores
determined by the MQAP and the GDT-TS values of all the models
for that target. The sets of correlation values for each MQAP are
plotted in Figure 4B. Our ranking of the methods is slightly different
from the ranking published in the CASP8 proceedings (Cozzetto
et al., 2009) due to differences in the ranking protocol (see a detailed
explanation of the differences in Supplementary Section S1.3).
However, as in the CASP8 results, the MQAPs that performed best
according to our assessment were the different variants of QMEAN
(Benkert et al., 2009) and MULTICOM (Cheng et al., 2009). The
variants with the highest mean correlation were QMEANfamily
(082) with a mean correlation of 0.778 and MULTICOM-REFINE
(013) with a mean correlation of 0.768. Following the different
variants of QMEAN and MULTICOM, the method with the next
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Fig. 5. The relation between the ConQuass score assigned to the model and
the model’s quality. (A) Plot of the GDT-TS (similar to the native structure)
versus the ConQuass score for the following models: all models in the CASP8
dataset (black, Pearson correlation 0.678); the models with the highest quality
alignment by the 50% filter (blue, Pearson correlation 0.780); models that
passed the less permissive 20% filter (red, Pearson correlation 0.843). (B)
Box plots of the GDT-TS values for models in each ConQuass score quartile.
For example, the median GDT-TS for the models scoring very low (below
−0.017) is 22.8, and 50% of these models have GDT-TS values between 14.8
and 40.6. For the models scoring very high (>0.12), the median GDT-TS is
73.1, and 50% of these models have GDT-TS values between 65.0 and 81.7.

highest ranking, with a mean correlation of 0.722, was CIRCLE
(396), which was the best performing single-structure MQAP in
CASP7 (Cozzetto et al., 2007). ConQuass (999, Fig. 4B; gray)
ranked next, with a mean correlation of 0.715.

As shown in Section 3.1.1, some structures were assigned a
low ConQuass score because of a low-quality alignment rather
than a low-quality model. Indeed, for some CASP8 targets, the
native structure itself scored very low by ConQuass. Such targets
were clearly not suitable for use with our method. Many of these
cases could be discerned in advance by using the alignment quality
measures presented in Section 2.2.4. To check how our method
performs on more appropriate targets, we used the 20% filtering
to select only the 17 targets with the highest quality alignment.
The performance of the different methods for this subset of targets
is shown in Figure 4C. With these targets, ConQuass performs
significantly better, and it is ranked first with a mean correlation
of 0.844. It is important to stress that the set of targets that are more
suitable for use with ConQuass can be selected a priori, as all the
features used for the filtering are based on the multiple sequence
alignment alone.

The Pearson correlations we evaluated were calculated for each
target independently, so scores produced by an MQAP that achieves
a high correlation value can be used to select among alternative
structural models for the same protein. However, in many scenarios
one wants to evaluate the absolute quality of a single uncertain
structural model without comparing it to other decoys. For these
cases, it is informative to know the relation between the MQAP
score and the structure quality, as measured by the GDT-TS. This
relation, for all models of all CASP8 targets, is shown in Figure 5A.
The overall correlation between the ConQuass score and GDT-TS
is good (0.678), especially when filtering for targets with a high-
quality alignment (0.843 if using the 20% filtering, Fig. 5A; red).
The overall correlation was also compared with that of the other
participating MQAPs (Supplementary Table S3).

Figure 5B presents these results in a way that is more intuitive for
interpreting the score given to a model by ConQuass. If a model is
assigned a very low ConQuass score (below -0.017), it is expected

to be of rather low-quality (median GDT-TS 22.8, most GDT-TS
values in the range [14.8, 40.6]). However, if a model is assigned
a very high ConQuass score (>0.12), it will very rarely be a low-
quality structure (median GDT-TS 73.1, most GDT-TS values in the
range [65.0, 81.7]).

3.2.3 Complementarity to other MQAPs ConQuass uses the
evolutionary conservation properties of the protein structure, a
feature that is not directly used by any other contemporary
MQAP. It therefore seems reasonable to suggest that ConQuass
is complementary to the other prevalent methods. To support this
claim, we scored the CASP8 models using two new MQAPs
that were trivial integrations of ConQuass with, respectively,
MULTICOM-REFINE and QMEANfamily, the two best performing
single-structure MQAPs in CASP8 (see Section 2.5). The
performance of these two integration methods was analyzed
using the same procedure described above. The integration with
ConQuass significantly improved the correlations achieved by both
MULTICOM-REFINE (P-value ∼ 4.2e-14) and QMEANfamily
(P-value ∼ 1.1e-08); see Supplementary Section S1.4.

4 CONCLUSION
Here we have presented ConQuass, a very simple MQAP based
directly on the compatibility between the conservation and
accessibility patterns of a given structural model. We studied
the scores that ConQuass assigns to experimental structures,
demonstrated its ability to discern erroneous models and checked the
relation between the ConQuass scores given to different models and
the models’ resemblance to the native structure. We have also shown
that ConQuass’s performance is comparable to that of other pure
single-structure MQAPs, despite being much simpler than most.

Our approach is different from previous MQAPs that used
evolutionary conservation, which were based on the spatial
clustering of the conserved residues. We feel our approach is more
direct, since this clustering is mostly an effect of the conserved
residues’ tendency to be buried in the structural core (for a
direct comparison with the method developed by Mihalek and
coworkers; see Supplementary Section S1.5). ConQuass is also the
first conservation-based approach to be rigorously compared with
contemporary MQAPs. In addition, our score is based on summation
of information that is local in the structure (the propensity of the
conservation class of each residue for its accessibility class), so
it should be adaptable to provide a local quality score for each
residue of the structure, as is done by local quality assessment
tools (Fasnacht et al., 2007). Preliminary tests for a local MQAP
based on summing the propensities over a fixed-width window on
the sequence have yielded promising results (data not shown).

In this study, we have clearly shown that evolutionary
conservation is a powerful property for use in model quality
assessment, so it would be advantageous for new MQAPs to
integrate this property with other more commonly used properties.
Evolutionary conservation is currently not used directly by any
MQAP, although some methods, like QMEAN and MULTICOM,
use it indirectly by comparing model surface accessibilities with
the predicted accessibilities, which are associated, in part, with the
evolutionary conservation. However, we have demonstrated that
these methods do not use the conservation information to its full
extent, as their results improve when their scores are integrated with
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those of ConQuass. In this work, we have followed a very naïve
approach for such an integration, using a simple linear combination.
Much better results would doubtless be obtained by a more intricate
approach, for example by using the residue conservation as one
of the features in a machine learning-based tool. In any case,
such integration would have to take into account the quality of
the alignment, as the evolutionary conservation property is more
indicative for high-quality alignments. The same approach could
also be used to integrate conservation in many other practices,
such as finding the physiological complex of a crystal structure
and scoring docking results. In addition, as the ConQuass score
reflects the consistency between the alignment and the structure, its
functionality could be reversed to check the quality of an alignment
based on a high-quality structure.

While ConQuass is not the best performing of the examined
MQAPs, many of which use a mixture of complex features
including geometric and energetic properties of the structure, it
has the advantage of being straightforward and easy to interpret.
The conservation pattern of the protein is not used by most
modeling and structural determination programs, so ConQuass gives
independent support for a structural model, whether experimental
or computational. If the model is assigned a low score, it is easy to
visualize the discrepancy of the model with the conservation pattern
by projecting it on the structure using ConSurf (Glaser et al., 2003),
as we have done in the examples in Figure 1 and Supplementary
Figure S4. This can either yield relevant insights regarding the
mechanism associated with the structure (for example, hint that it
may bind to another molecule; see Supplementary Section S1.1),
lead to a rejection of the model (see Fig. 1C) or perhaps in some
cases guide further refinements of the model.
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