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Transmembrane (TM) proteins comprise 20–30% of the

genome but, because of experimental difficulties, they

represent less than 1% of the Protein Data Bank. The dearth of

membrane protein structures makes computational prediction

a potentially important means of obtaining novel structures.

Recent advances in computational methods have been

combined with experimental data to constrain the modeling of

three-dimensional structures. Furthermore, threading and ab

initio modeling approaches that were effective for soluble

proteins have been applied to TM domains. Surprisingly,

experimental structures, proteomic analyses and

bioinformatics have revealed unexpected architectures that

counter long-held views on TM protein structure and stability.

Future computational and experimental studies aimed at

understanding the thermodynamic and evolutionary bases of

these architectural details will greatly enhance predictive

capabilities.
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Introduction
Transmembrane (TM) proteins comprise�20-30% of the

genome [1,2] and are involved in many crucial cellular

processes, such as cell-to-cell signaling, metabolite trans-

port and energy production. Solving the structures of

these proteins is therefore imperative for clear mechan-

istic understanding of central processes in physiology.

However, despite recent advances in production of TM

protein crystals, membrane protein structures are difficult

to obtain and comprise less than 1% of the entries in the

Protein Data Bank (PDB) [3].

Comparative- or homology-based approaches to structure

prediction have been immensely successful with soluble

proteins [4]. These methods require a homologous pro-

tein, for which a structure has been solved. Because of this
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requirement, homology modeling has been most useful

for the few TM protein families, for which at least one

member has been crystallized. A recent analysis of homol-

ogy-modeling accuracy for membrane proteins has shown

that the protocols that are successful in comparative

modeling of soluble proteins reach similar achievements

for membrane proteins [5�]. However, because at present

only few representative atomic-resolution structures of

TM protein families are available, homology modeling

cannot serve as a general purpose approach for structural

modeling. In this review, we will therefore focus on

recent advances in structure prediction that do not rely

on homology to solve structures (subject covered in

[6,7�]).

Membrane protein folding can be conceptually decom-

posed into two consecutive steps: folding of the indivi-

dual hydrophobic segments into helices followed by helix

association (Figure 1) [8]. Accordingly, the problem of

predicting the structure of a-helical TM proteins has

been approached by breaking it down into the following

steps: (i) delineating the boundaries of the TM segments,

each of which will assume a helical conformation; (ii)

determining the topology of the protein (i.e. which extra-

membrane segments reside inside the cytoplasm and,

conversely, which segments reside outside the cell);

and (iii) predicting the tertiary conformation of the pro-

tein (i.e. the way in which the helices are packed with

respect to one another). The past few years have seen

considerable advances in all of these steps. In this review,

we will describe some of these advances and emphasize

the discovery of novel features of TM protein folds that

bear on the goal of structure prediction.

Identification of TM a-helices in the protein
sequence
Early attempts for predicting the locations in the

sequence of membrane-integral segments were based

on the notion that a sequence segment would partition

into the membrane if it were sufficiently long and hydro-

phobic. Starting with the method of Kyte and Doolittle

[9], various algorithms for detecting membrane-

embedded sequence segments were proposed on the

basis of experimental and computational data. At the core

of these methods lies a hydrophobicity scale that assigns

to each amino acid residue a score that can be roughly

interpreted as the free energy of its transfer from

hydrophilic to hydrophobic media, corresponding to its

insertion probability into the membrane. The typical

approach would then be to search the sequence for a

sufficiently hydrophobic stretch of residues comprising
www.sciencedirect.com
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Figure 1

TM protein folding can be thought to proceed in two stages [8]: the

folding of individual TM segments into helices (top) followed by helix

packing (bottom). The topology of the protein is often determined by the

positive-inside rule [17], with the cytoplasmic loops tending to be

enriched by positively charged residues in comparison with the

extracellular loops.

Figure 2

The potassium channel [13] is one of the several structures of membrane

proteins that show structural ‘irregularities’, such as half helices (blue)

and re-entrant loops. These irregularities cannot be identified from the

sequence by current methods [12]. For clarity, only three out of four of

the subunits comprising the potassium channel are shown. Figure

generated with MolScript [70] and rendered with Raster3d [71]. Figure

reproduced with permission from [37].
approximately 20 amino acids, which is the minimal

length necessary for an a-helix to traverse the 30 Å

hydrophobic core of the membrane [10].

During the 90s, there was a departure from physicochemi-

cally based approaches to methods that rely on statistical

inference, such as hidden Markov models, support vector

machines and neural nets, all of which make use of the

existing knowledge on the partitioning of particular

sequence segments to the membrane. These methods

appeared at first to be superior to the simple hydropho-

bicity-based methods, with success rates of 90% and

above [1]. However, a fundamental difficulty in the

validation of statistical methods is to obtain sufficiently

disparate datasets for training and validation. Indeed,

when Rost and co-workers recently revisited the problem

of TM sequence prediction [11] using datasets that were

carefully constructed with the aim of decreasing redun-

dancy, they found that the success of the statistical

approaches was overrated, and they in fact achieved

results that were not much better than those that were

obtained by some of the hydrophobicity-based methods.

In this respect it is important to emphasize that an overlap

of only three amino acids between the predicted and

observed helices is considered sufficient for being an

accurate prediction [11]. Thus, in a recent survey it

was demonstrated that, on average, the best-performing

prediction methods were in error by a little more than two

turns at the helix termini [12]. Because most structural

modeling approaches rely on the correct identification of

the helical segments in the sequence (see below), these

large errors are likely to propagate in subsequent model-

ing stages, requiring manual intervention. A more alarm-

ing conclusion made in this survey concerned the
www.sciencedirect.com
inability of current prediction methods to identify ‘irre-

gular’ structures, such as half helices and re-entrant loops,

as those seen in the structure of the potassium channel

(Figure 2) [13] and the aquaporin family [14]. Hopefully,

with the likely increase in the number of proteins exhi-

biting such irregularities over the next few years, some

unifying principles will emerge from their sequences,

enabling prediction of these features.

Recently, the hydrophobicity-based approach to detect-

ing membrane-embedded segments was given another

boost from the experimental studies by von Heijne and

co-workers [15��]. The authors reported a series of experi-

ments that attempted to obtain a hydrophobicity scale

using an experimental setup that is far closer to the

physiological system than previous experimental reports,

including the translocon protein-conducting channel and

membranes from the endoplasmic reticulum (ER). Con-

cerns were raised regarding the possibility that some of

the measured partitioning energies encompass contribu-

tions from interactions between the probe sequence

segments and other protein components in the system,

thus limiting the generality of the scale produced by these

measurements [16�]. Nevertheless, this experimental
Current Opinion in Structural Biology 2006, 16:496–504
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approach is promising, raising hope that the prediction of

the location of TM helices in the sequence of membrane

proteins will eventually be based on algorithms that

account for the various factors that affect protein translo-

cation in biological systems.

Topology
Determining the topology of a membrane protein is a

crucial preliminary step to modeling its structure as it

constrains the way individual TM segments could associ-

ate within the membrane, as well as subunits within

complexes. The positive-inside rule (i.e. the observation

that the segments in the cytoplasmic loops and the TM

segments that are adjacent to the cytoplasm are often

enriched in the positively charged lysine (K) and arginine

(R) residues when compared with the extracellular loops

(Figure 1) [17]) has remained the most powerful tool for

predicting the topology of a protein from its sequence for

almost two decades. The factors contributing to the

(K + R) bias are under intense study, and it is still unclear

whether the bias originates from properties of the trans-

locon [18] or the cytoplasmic membrane [19], but a recent

statistical survey of 107 genomes reconfirmed the validity

of this empirical rule [20]. The (K + R) bias can serve as a

rule for predicting topology, by requiring that more

positively charged residues face the cytoplasm [1].

Recently, von Heijne and co-workers have conducted a

whole-proteome experimental analysis of the topology of

TM proteins in the Escherichia coli inner membrane [21��].
They used two reporter proteins that were linked to the

C-terminus of each putative membrane-integral protein

in E. coli. One of these reporters is only active in the

cytoplasm, whereas the other is exclusively activated in

the periplasm. By measuring the activities of the repor-

ters, the authors assigned the topology of 601 out of 700

predicted TM proteins in the E. coli genome. Comparing

these data to the predictions of a widely used algorithm

that is based on a hidden Markov model called TMHMM

[2], the authors found that roughly 80% of the predictions

were in accord with the experimentally determined topol-

ogies. This correlation shows that the major aspects

affecting protein topology are captured by contemporary

computational methods, but that these still have signifi-

cant room for improvement. These experimental results

can serve as a much-needed large-scale benchmark for

validation and comparison of future topology prediction

algorithms.

The vast majority of proteins in von Heijne and co-

workers’ analysis exhibited unique topology [21��],
whereby their C-terminus was found to be either cyto-

plasmic or periplasmic. However, for five out of 601

proteins both reporters were activated, implying that

for each of these five proteins, some of the protein copies

inserted with one topology, and the others with the

reverse topology [21��,22]. The five proteins with dual
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topology are relatively small in size, comprising �100

amino acid residues and are predicted to contain four TM

domains. Furthermore, as expected, all five exhibit very

small (K + R) biases. For at least one of these proteins, the

prototypical small multidrug resistance antiporter EmrE,

the suggestion of dual topology was already made in the

past on the basis of structural data and the lack of clear

(K + R) bias [23]. Nevertheless, it is important to note

that a previous study based on a different biochemical

assay reported a unique topology for this protein [24].

This conflict between two lines of experimental evidence

still needs to be resolved, but the suggestion that some

TM proteins insert with opposite topology has significant

implications for understanding structures and functions of

these proteins.

Threading and ab initio structure prediction
On the one hand, integral membrane proteins exhibit

much higher uniformity of secondary structure (mostly a-

helical bundles) than soluble proteins, and are highly

constrained in their conformations because of the pre-

sence of the membrane [25]. It could therefore be

expected that ab initio structure prediction, whereby

the protein structure is predicted without resorting to

homology with other proteins or to experimental data,

should be a more feasible goal for TM than for soluble

proteins. On the other hand, as sampling significant

portions of conformation space remains a very challenging

aspect of ab initio structure prediction [26], success in

soluble protein structure prediction has been restricted to

small proteins, consisting of approximately 80 amino acid

residues [27]. Membrane proteins are usually much lar-

ger; for instance, visual rhodopsin, which serves as a

prototype for the large family of 7-TM GPCRs, consists

of more than 300 amino acid residues.

Two similar methods, MembStruk [28–31] and PRE-

DICT [32,33], were specifically tailored to predict the

structures of GPCRs on the basis of physicochemical

principles. For both methods, a full-atom model of the

GPCR is automatically obtained, based on the amino acid

sequence of the protein alone. In the first step, the

boundaries of the seven TM helices are predicted by

means of hydrophobicity scales. A preliminary (tentative)

coarse-grained model of the packing of these helices into

a compact and closed structure is constructed, and various

conformations in the vicinity of this state are sampled at

random, favoring conformations in which hydrophobic

residues face the lipid. Full-atom models of the TM

domains of these structures are built and subjected to

several cycles of optimization using molecular dynamics

(MD) simulations. The outcome is a full-atom model of

the entire protein, including the extra-membrane loops.

The methods produced 3D models of bovine rhodopsin,

the only GPCR structure available in the PDB, with�3 Å

root-mean-square deviation (RMSD) from the native

structure in the TM region. Further validation of this
www.sciencedirect.com
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approach includes in silico docking of known drug-like

compounds to the receptors. Model structures of several

GPCRs, including the b2 adrenergic [30] and D2 dopa-

mine [28] receptors, were built this way and used success-

fully for drug design [32]. This suggests that important

structural aspects of the ligand-binding site were accu-

rately captured by these methods. However, it was not

shown unambiguously that the remainder of the structure

is correct too.

Another potentially promising approach utilizes the two-

step TASSER method that threads the sequence on parts

of solved protein structures, and then refines the resulting

template [34�]. Validation on a set of 38 nonhomologous

TM protein structures yielded 17 structures for which the

RMSD to native was less than 6.5 Å, but many others with

RMSD to native greater than 10 Å. When applied to

predicting the structure of bovine rhodopsin, TASSER

produced a model with a low 2.1 Å RMSD from native on

the Ca coordinates of the TM domain. Subsequently, the

method was applied to model the structures of most of the

�900 human GPCRs, and a few of these models were

examined and appeared to be consistent with the avail-

able experimental data. It is important to note that

although the method’s success in modeling rhodopsin

is promising, only a few other GPCRs showed substantial

similarity (>30% sequence identity) to bovine rhodopsin

[7,34�], and it is therefore uncertain that the other models

are as faithful to the native state as the model of rho-

dopsin. Also, it is not known yet whether TASSER’s

GPCR models are likely to be closer to the receptors’

inactive or active form, the latter of which is pharmaceu-

tically more interesting [7]. Nevertheless, the models

generated by TASSER might provide an important

resource for probing structure–function relationships in

this important class of receptors, as many of the current

approaches to modeling GPCR structures rely on homol-

ogy to bovine rhodopsin [6], despite the low sequence

identity.

Recently, the Rosetta algorithm for structure prediction,

which has been successful in the free-modeling category

of the community-wide experiment on critical assessment

of structure prediction (CASP) [35], was adopted and

implemented for TM protein structures [36�]. Inter-resi-

due contact potentials were derived from a set of solved

protein structures, and enriched with their sequence

homologues. Validation on a set of solved TM protein

structures showed that the performance of this imple-

mentation of Rosetta (below 4 Å for 51–145 of the super-

imposed residues) is comparable to that of Rosetta for

soluble proteins in the same size range. Although full-

atom prediction was shown to produce significant

improvements in prediction accuracy of soluble proteins

[27], it was not tested in this implementation of Rosetta,

partly because of the prohibitive computational load

associated with full-atom prediction for large proteins.
www.sciencedirect.com
Structure prediction based on experimental
constraints
One potential venue for obtaining novel structures, which

has been explored by several groups in recent years, is the

exploitation of functional and low-resolution structural

data on TM proteins to constrain models [37�]. Such data

could involve site-specific mutagenesis, chemical cross-

linking, intermediate-resolution structures and biophysi-

cal data, such as NMR, EPR and FTIR. These

heterogeneous data are interpreted as constraints on

the positions of individual amino acid residues or on

the structural relationships among them. For instance,

positions that are intolerant to substitution are likely to be

packed inside the protein core, and positions that cross-

link are likely to be vicinal. In addition to these experi-

mental data, the modeling methods assume that the

hydrophobic sequence segments form a-helices that tra-

verse the membrane.

The pioneering work of Herzyk and Hubbard [38]

employing such disparate data sources produced very

promising results, with a model of bacteriorhodopsin

matching the native-state structure by a low 1.87 Å

RMSD. However, further modeling attempts that relied

primarily on mutation and crosslinking data demonstrated

that it is difficult to interpret many of these data in a

structurally unequivocal way [37�]. Recent implementa-

tions of this approach have therefore relied on more

limited data sources. For instance, a method was sug-

gested recently that employs data that can be interpreted

as distance constraints between amino acid residues from

EPR, FTIR and chemical crosslinking [39]. Models con-

sisting of a-helices were sampled using a Monte Carlo

strategy. The conformations were scored according to the

extent to which they satisfied the experimental distance

constraints and structural parameters derived from a set of

solved TM proteins, including preferred helix-packing

angles and distances, pairwise amino acid contact prefer-

ences and overall structural compactness. Encouragingly,

this method was shown to produce a model of rhodopsin,

which was 3.2 Å RMSD from the native-state structure,

based on only 27 experimentally derived distance con-

straints (taken from published studies), demonstrating

that it might be possible to obtain close-to-native models

of large membrane proteins on the basis of a limited set of

experimental constraints.

Several groups have recently suggested methods that

employ data from cryo-electron microscopy (cryo-EM)

intermediate-resolution structures, together with data on

hydrophobicity, evolutionary patterns and the lengths of

the loops that connect neighboring TM segments [37�].
For several proteins, cryo-EM structures are available at

in-plane resolutions of 5–10 Å (e.g. the gap junction [40]

and EmrE [23]). At this resolution, it is impossible to

either position individual amino acid residues, or even

unambiguously identify the assignment of TM segments
Current Opinion in Structural Biology 2006, 16:496–504
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to the helices observed in the cryo-EM structure. Hence,

structure prediction based on cryo-EM is typically com-

prised of helix assignment, followed by orientation of the

helices around their principal axes.

To solve the helix assignment problem, various studies

used biochemical data on the functional roles of indivi-

dual TM segments [41,42]. A complementary approach

relies on the fact that some of the loops that connect TM

helices are quite short (less than eight amino acid resi-

dues). Such short loops constrain the distance between

the helix termini that they connect. Based on this con-

straint, an algorithm was recently suggested, which, for a

given cryo-EM structure and the lengths of each of the

interconnecting loops, scans all possible assignments

(potentially n! permutations, where n is the number of

helices in the map), and ranks them by their compatibility

with the cryo-EM structure [43]. The performance of the

algorithm was found to be sensitive to the exact delinea-

tion of the helix start and end points, which are difficult to

predict with accuracy. Another proposed method that

suffers less from such sensitivity ranks each TM sequence

segment according to its overall hydrophobicity and evo-

lutionary conservation [44]. Highly conserved and hydro-

philic segments were ranked as helices that are likely to

be buried within the protein core, and more variable and

hydrophilic segments were assigned to lipid-exposed

positions.

Once the helix assignment problem is solved for a given

protein, canonical a-helices are constructed to fit the data

in the cryo-EM map, and are rotated around their princi-

pal axes to identify the native state conformation. Follow-

ing the work of Baldwin et al. [45] on the prediction of the

structure of the TM domain of rhodopsin based on its

cryo-EM structure and sequence analysis, recently two

similar methods [46,47] were independently suggested. It

was shown that the cores of many TM protein structures

are much more evolutionarily conserved than their per-

ipheries, and tend to pack the most polar residues [48].

These observations can be framed as predictive rules,

according to which orientations that pack conserved and

hydrophilic positions in the helix bundle are more favored

than others. One of the methods generates only Ca

models [47], whereas the other adds sidechains and uses

manual refinements and minimization to generate full-

atom models [46]. It should be noted, however, that often

the energy landscape for full-atom models is extremely

rugged and even 1 Å differences in the atom positions

from the native-state structure can result in large energy

penalties [26]; thus, it still remains to be seen whether the

addition of sidechains improves the resulting models.

The two methods were applied to intermediate-resolu-

tion structures of TM proteins, for which atomic-resolu-

tion data were not available: the oxalate transporter OxlT

[46] and the gap junction [49��]. Because the evolution-

ary-conservation pattern on two of the helices of the gap-
Current Opinion in Structural Biology 2006, 16:496–504
junction forming protein, connexin, was not informative

enough to constrain their orientations, another sequence

analysis method [50] was employed that identified corre-

lated amino acid positions, thus predicting which pairs of

amino acid residues could interact. Part of the attractive-

ness of an approach to structure prediction, which uses

information from sequences and cryo-EM structures, lies

in the fact that it does not necessarily rely on large

amounts of previously published functional data. Hence,

it is possible to subsequently use these data for validation.

In the modeling of the gap junction TM domain, for

instance, it was shown that, although the model was not

constrained by clinical data, it placed almost 30 disease-

causing but physicochemically mild mutations in the core

of the helix bundle, where they would disrupt folding,

whereas two physicochemically radical polymorphisms

were placed in more spacious regions of the protein

structure [49��]. Similarly, the model structure of OxlT

placed residues that were found to crosslink in experi-

mental assays in proximal positions [46].

Kinks in TM proteins are known to have important

functional roles [51,52] but, until recently, could not be

predicted from sequence information. Recently, it was

shown that, in many cases where a kink is present in a TM

protein structure, prolines are observed in the multiple-

sequence alignment, even if the solved protein structure

does not contain a proline at that position [53�]. The

direction and magnitude of the kink might also be pre-

dicted from local sequence features [54]. Accordingly, it

might be possible to model kinks where these have been

observed in low-resolution structures, as in EmrE [23], or

to bias the ab initio predictions to produce kinks and, thus,

generate more native-like models.

Computational validation of structures
Recently, a small number of atomic resolution structures

of membrane-integral proteins were suggested to repre-

sent conformations that are distorted with respect to the

native-state structure [55,56]. Atomic resolution struc-

tures inspire a large amount of (usually very productive)

work aimed at understanding structure–function relation-

ships. Conversely, physiologically irrelevant structures

might cause much work to be done in vain, on top of

supplying a wrong view of the protein. Usually, the

ultimate test for the physiological relevance of a structure

is its compatibility with carefully crafted biochemical and

biophysical analysis. However, such analyses are often

difficult to conduct. Because some of the computational

analyses described above can be used to predict the

structures of membrane-integral proteins, it is reasonable

to expect that they might provide grounds for doubting

structures that have not been sufficiently supported by

biochemical data. As an example of this approach,

Figure 3 shows two structures of the bacterial multidrug

resistance protein EmrE obtained by X-ray crystallogra-

phy at 3.8 Å and 3.7 Å resolution [57,58]. Both structures
www.sciencedirect.com
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Figure 3

Two recently solved structures of homodimers of the multidrug

resistance protein EmrE from E. coli are shown, which are incompatible

with the observation that amino acid residues at the core of many

membrane-integral proteins tend to be evolutionarily conserved,

whereas those on the periphery are variable. (a) The structure of

substrate-bound EmrE [58] exhibits highly variable residues on helix

M2 forming tight contacts with M3, whereas highly conserved positions

on M1, M2, M3, M3’ and M4’ are exposed to lipid. The substrate

tetraphenylphosphonium molecule is shown in space-fill mode, with

the phosphate colored in yellow, and carbon atoms in green. The

structure is viewed perpendicular to the proposed membrane plane.

(b) Similarly, the structure of EmrE without bound substrate [57] locates

highly variable residues in the tight interface formed between M2 and

M2’, and highly conserved residues on M1, M4, M1’, M3’, and M4’ in

lipid exposed positions. The incompatibility between the conservation

pattern and the burial of amino acid residues parallels the observation

that both structures have many features that are in contradiction with

biochemical data on EmrE [61]. Evolutionary conservation was

computed using a multiple-sequence alignment of 99 small multidrug

resistance proteins with the ConSurf webserver [72]. Figure generated

with MolScript [70] and rendered with Raster3d [71].

www.sciencedirect.com
are clearly at odds with the observation made on many

TM protein structures that evolutionarily conserved posi-

tions tend to be packed in the core of the a-helix bundle,

whereas the variable residues face the lipid environment

[46,47,59,60]. The discrepancy between the conservation

pattern and the packing of residues parallels an analysis,

reported in this issue of Current Opinion in Structural
Biology [61], that compares these structures with the

known biochemical and biophysical data on EmrE, con-

cluding that they most likely do not represent the phy-

siological native state of the protein.

Future directions
In recent years, computational methods have been imple-

mented for the prediction of TM protein structures.

However, the roles of different energetic factors in con-

tributing to TM protein folding are still poorly under-

stood [25,62] and therefore difficult to predict. For

instance, it was proposed that in low-dielectric environ-

ments polar bonds would make a large contribution to

protein stability [10]. Indeed, in engineered systems,

hydrogen bonds were shown to drive the interaction

between TM helices [63,64], but recent measurements

of the strengths of polar interactions in membrane pro-

teins have yielded smaller magnitudes [65,66] than antici-

pated by computations on ideal hydrogen bonds [67,68].

Based on these and other measurements of the energetics

of helix association in the membrane, it has been sug-

gested that the primary contribution to helix interactions

in the membrane comes from van der Waals packing and

originates from buried surface area as in soluble proteins

[69��]. This suggestion, which requires additional experi-

mental support, is crucial because it implies that the

major factors that are currently embodied in ab initio
methods for structure prediction in soluble proteins, such

as steric packing [27], might be equally useful in mem-

brane-integral proteins. It is likely that the relative con-

tributions of polar and van der Waals interactions to

membrane protein stability will continue to be a matter

of intense experimental investigation over the next few

years, and that the lessons learned from these studies will

be incorporated into the force fields of ab initio and

threading algorithms for membrane proteins [34�,36�].
The use of these lessons could reduce, in part, the need

for deriving pairwise contact potentials from the small

number of solved TM protein structures.

One impediment on the way to the application of ab initio
techniques to membrane proteins is the fact that these

proteins are very large in comparison with soluble pro-

teins, to which these methods were successfully applied,

thus making full-atom prediction impractical [36�]. How-

ever, as modeling approaches that make use of experi-

mental information, such as cryo-EM low-resolution

structures and distance constraints, have been clearly

successful in identifying near-native although coarse-

grained conformations of TM proteins [38,39,45–47], a
Current Opinion in Structural Biology 2006, 16:496–504
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synergy might be attainable from combining these meth-

ods with full-atom predictions. This would result in

reliable atomic models at a computationally feasible cost.

With the advent of new structures and the application of

novel biochemical assays to membrane-integral proteins,

the last few years have seen a large increase in the

qualitative understanding of TM protein folds. This

improved understanding has gone hand-in-hand with

more sophisticated prediction and modeling attempts.

Undoubtedly, the new structures and structure–function

analyses that will be conducted over the next few years

will teach us many lessons on the possible architectures of

TM proteins and their governing thermodynamic princi-

ples, further increasing our predictive capabilities.

Update
Recently, the Rosetta membrane methodology [36�] was

adapted and applied to study the voltage-induced con-

formational changes in the voltage-dependent potassium

(Kv) channels [73]. Open and closed conformations were

computed for the eukaryotic Kv1.2 channel and for the

bacterial KvAP on the basis of the published methodol-

ogy, the homology to X-ray structures of these channels

and several experimental constraints. The computed

open conformation of Kv1.2 was close to its crystal struc-

ture, thus serving as partial validation for the approach.

Interestingly, the results suggest that the conformational

changes in the voltage-sensor domain of the bacterial

protein are larger than the changes in Kv1.2, which could

explain the large inconsistencies between functional stu-

dies of the bacterial and eukaryotic channels.
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