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Abstract

Structures of proteins and protein–protein complexes are determined by the

same physical principles and thus share a number of similarities. At the same

time, there could be differences because in order to function, proteins interact

with other molecules, undergo conformations changes, and so forth, which

might impose different restraints on the tertiary versus quaternary structures.

This study focuses on structural properties of protein–protein interfaces in

comparison with the protein core, based on the wealth of currently available

structural data and new structure-based approaches. The results showed that

physicochemical characteristics, such as amino acid composition, residue–
residue contact preferences, and hydrophilicity/hydrophobicity distributions,

are similar in protein core and protein–protein interfaces. On the other hand,

characteristics that reflect the evolutionary pressure, such as structural compo-

sition and packing, are largely different. The results provide important insight

into fundamental properties of protein structure and function. At the same

time, the results contribute to better understanding of the ways to dock pro-

teins. Recent progress in predicting structures of individual proteins follows

the advancement of deep learning techniques and new approaches to residue

coevolution data. Protein core could potentially provide large amounts of data

for application of the deep learning to docking. However, our results showed

that the core motifs are significantly different from those at protein–protein
interfaces, and thus may not be directly useful for docking. At the same time,

such difference may help to overcome a major obstacle in application of the

coevolutionary data to docking—discrimination of the intramolecular informa-

tion not directly relevant to docking.
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1 | INTRODUCTION

Protein tertiary and quaternary structures should have a
lot in common because they are determined by the same
physicochemical interactions.1 However, functional

restraints, such as proteins' need to undergo conforma-
tional changes and to associate with, and dissociate from,
other macromolecules and ligands, may impose different
constraints on the tertiary versus quaternary structures.
Earlier studies pointed out such similarities and
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differences in structural motifs and architecture,2–4

residue–residue contact preferences,5–7 including investi-
gations specifically focusing on comparison of protein–
protein and intrachain domain–domain interfaces,8 and
structural diversity of the domain–domain interfaces.9

In this study, we revisit this problem, inspired by the
earlier pioneering structure-based studies,2–4 by systemat-
ically investigating fundamental structural properties of
protein–protein interfaces in comparison with the protein
core, taking advantage of the multitude of structural data
that have become available since then, combined with
new structure-based approaches. The rapid growth of
PDB allowed us to generate comprehensive datasets that
include a broad spectrum of structural motifs extracted
from the structure pool, which is by orders of magnitude
larger the one used in earlier studies of this subject.

We studied protein–protein interfaces and protein
cores from various perspectives, by extracting from pro-
tein cores pairwise structural motifs (pseudointerfaces or
intrafaces) and systematically comparing them to
protein–protein interfaces, as well as by direct alignment
of the interfaces with the core. Our algorithm for generat-
ing intrafaces allowed us to sample the space of the frag-
ments inside proteins, for the first time making possible a
direct structural comparison of the interfaces with the
pairwise interface-like structural motifs in the core.
Along with the drastically larger amount of diverse struc-
tural data available for this study, and new approaches
and analysis tools, we used a variety of structural and
physicochemical characteristics for the comprehensive
comparison of the protein interfaces with the protein
cores from different perspectives.

The results showed that while characteristics that are
largely based on physics (e.g., solubility) are similar,
properties, such as structural composition and packing,
that are related mostly to evolution/function are to a sig-
nificant degree different. The results provide important
insight into fundamental properties of protein structure
and function and contribute to better understanding of
the ways to model protein assemblies.

2 | METHODS

2.1 | Datasets

The following datasets were used in our study.
Domains set was used for analysis of structural motifs

in the protein core. To exclude from consideration inter-
faces between protein domains, the core was defined as a
single domain. For convenience of terminology in this
study, in our definition, the core comprises the whole
domain, including its surface. We used the full domain in

order not to miss the cases where part of the aligned
domain structure is on its surface. Removal of the surface
residues would affect the partition of the protein domains
into secondary structure elements (SSE), which could
make the comparison with the interfaces inconsistent.
Our procedure was also able to identify alignments of the
interfaces with domain fragments that were partially on
the surface. This allowed us to analyze cases which illus-
trate evolution of the domain fragments.

The dataset consisted of 13,807 representative
domains, one per family, at the lowest level of the ECOD
database hierarchy10 (family/F-level, with domains in a
family sharing significant sequence similarity). The rep-
resentative domains were human/expert-selected by the
ECOD team (in case of multiple choices, the selected
domain was the one with the best resolution).

Interfaces were from an existing set of protein inter-
faces generated in an earlier study based on PDB
December 2016 download. Binary interfaces were
extracted from 60,945 biological units at 12 Å atom–atom
distance cutoff between the interacting monomers. Such
relatively large cutoff was used in order to preserve the
integrity of SSE in the resulting interface fragments.11

However, this also led to the inclusion of small non-
interface parts and short fragments of the interface loops
which could distort the structural alignment. These arti-
facts were purged by removing short (<4 residues) frag-
ments. The four-residue fragments were kept only if all
the residues were within 6 Å from the other protein.
Finally, interfaces with buried surface area <200 Å2 per
chain were excluded. This resulted in 137,083 interfaces,
of which 36,929 were dimers and the rest were higher
order oligomers.

The interfaces were clustered by structure similarity
according to TM-score,12 which has values in the 0 to
1 range. Clustering with a stringent TM-score cutoff of
0.9 yielded a set consisting of 51,923 representative inter-
faces. In addition, for direct comparison with the protein
cores, we generated a smaller set of 23,878 representative
interfaces by clustering with a TM-score cutoff of 0.6. The
representative structures were selected by resolution. If
the structural resolution of interfaces was similar, the
larger interface was selected. In case of the same size, the
one with the most recent release date was selected. In
the resulting set, the interfaces, on average, contained 6.7
SSE elements on one side. To compare SSE composition
of the interface and intraface, for computational effi-
ciency, we used a precompiled set of protein interfaces
from the DOCKGROUND resource (5,936 interfaces13).

Intrafaces were generated to analyze structural motifs
inside the protein core. The outline of the procedure to
generate the set from the domains set (see above) is pres-
ented in Figure 1. For SSE assignment, each domain was
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parsed by DSSP14 (accessed through Biopython library).
The eight states provided by DSSP were grouped into
three classes: helix (G, H, and I), strand (E and B), and
loop (S, T, and C, where C sometimes is a blank space).
An undirected graph was generated with SSE as nodes,
and the weight of the edge between the nodes equal to
the distance between corresponding SSE. The distance
between two SSEs was calculated as the average of
n shortest distances between Cα atoms, where n is the
number of residues in the smaller SSE. The SSE was clus-
tered by the hierarchal clustering algorithm based on the
weight of the edges. At each iteration, a new graph was
generated with clusters from the previous iteration as
nodes. A pair of nodes formed a putative intraface if more
than half of the SSE in the smaller cluster/node were
connected to the other cluster/node (the connection
existed if an SSE was closer than 12 Å from an SSE in the
other cluster). Nodes that satisfied this criterion were
merged into a single node, so that the intrafaces would
become parts of a joint/larger intraface (Figure 1). The
distances between the nodes were recalculated and the
procedure was repeated for the new graph, with each
iteration reducing the number of nodes. The procedure
was iterated until the number of nodes did not change.

To avoid bias in comparison with the interfaces, the
same procedure of filtration (removal of shorter frag-
ments, structure resolution, release date, etc.—see above)
was applied. Clustering with a TM-score cutoff of 0.9
yielded a dataset consisting of 22,339 intrafaces.

2.2 | Residue–residue contact
frequencies

The residue–residue contact preferences were calculated
according to the methodology from our earlier study of

protein–protein interfaces.5 The residues were in contact
if the Cβ–Cβ distance (Cα for Gly) was <6 Å. The normal-
ized frequency of residue type i (i = 1, 2, …, 20) was
defined as Wi = Fi/

P
i Fi, where Fi is the number of resi-

dues i (in the case of interface and intraface contacts, the
residues were required to have at least one contact with
any residue across the interface or intraface, respec-
tively). The normalized number of contacts was calcu-
lated as Qij = Cij/

P
k,l Ckl, where Cij is the total number

of contacts between residue types i and j. The log odds of
a contact between residues i and j was based on the ratio
of the actual and the expected numbers of contacts
Gij = 10 log (Qij/[Wi Wj]).

2.3 | Procedure for detection of
interface-like motifs in protein core

The following procedure was developed to detect
interface-like structural motifs in the core of a protein
domain. The part of an interface from one protein was
aligned to the protein core by TM-align.15 To maximize
the detection of similarity, the TM-score was normalized
by the length of the smaller component (the interface or,
in rare cases of smaller domains, the domain), and desig-
nated as the score of the alignment, mTM-score. For
alignments with mTM-score ≥0.5, we aimed to look for
the other part of the interface in another region in the
same domain. Thus, the aligned part of the core was
deleted from the domain, and the remaining structure
was aligned to the other part of the interface. The first
aligned part of the core was deleted to avoid an overlap
in case the second part of the interface would be aligned
to it. Again, only alignments with mTM-score ≥0.5 were
kept. The procedure was repeated for the interface parts
in reverse order, and the alignment with the highest
mTM-score was selected. Finally, if both parts of the
interface were successfully aligned to the same domain,
the two aligned parts of the core were extracted and
structurally compared with the interfaces by MM-align12

normalized by the smaller of the two structures. This was
done to ensure that the two core fragments are not only
similar to the interface parts separately, but also have
similar relative orientation. A threshold of MM-score 0.6
was used to define nonrandom structural similarity,
which involves similar relative orientation of the frag-
ments. All alignments of the structural motifs in the core
with the interfaces that satisfied the above conditions
were kept. Thus, for a single interface, there could be
multiple aligned core motifs.

The procedure was validated on a dataset of 5,936
interfaces from the DOCKGROUND resource (see above). For
each interface from the set, the corresponding full

FIGURE 1 Pipeline for extraction of intrafaces
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complex was retrieved. The two chains of the complex
were combined into one to represent the one-domain sce-
nario. The above procedure was used to align the inter-
faces from that set to determine if it detects the true
interfaces between the combined chains. The true inter-
faces were consistently detected in all structures.

2.4 | Prediction of interfaces based on
intrafaces

To evaluate the possibility of predicting protein–protein
complexes based on the intrafaces, comparative modeling
of the interfaces (template-based docking) was performed
by the partial structure alignment protocol.16,17 To build
a model of the target protein–protein complex, the proto-
col uses TM-align to perform a systematic search of suit-
able templates in a library of interfaces (in this study,
intrafaces). Models with poor alignment to the templates
(TM-scores <0.4) were left out of the prediction pool.18

Quality of the resulting model was assessed by the ligand
Cα RMSD, with the receptor (the larger protein in the
complex) optimally aligned. A model with the ligand
RMSD ≤10 Å was considered correct (near native).19

3 | RESULTS AND DISCUSSIONS

3.1 | Comparison of interface and
intraface

The intrafaces extracted from the protein core consisted
of two structural components (see Section 2) for an
appropriate comparison with the interfaces. The
intrafaces were extracted from protein domains, rather
than the entire proteins, in order to exclude domain–
domain interfaces, which may resemble protein–protein
interfaces. Different intrafaces were generated from the

same protein domain, reflecting various structural config-
urations and sizes (two examples are shown in Figure 2).

Intraface and interface are comparable to each other
in size and buried surface area (Supplementary Materials
Figure S1). Still, the intrafaces were somewhat tighter
packed, which is likely due to the tighter packing of the
protein core than that of the protein–protein interface
(see the discussion of SSE packing below). A likely
related observation was the greater presence of loops at
the interfaces (Figure S2, confirming earlier reports3),
which are packed with lower density than the ordered
secondary structure elements.

For further analysis, residue–residue contact propen-
sities were calculated for domains, intrafaces, and inter-
faces (see Section 2). The patterns of the propensities for
domains, intrafaces and interfaces (Figure 3) resembled
each other overall, although with certain differences. In
general, the contacts between residues of the same type
(the diagonal elements of the contact matrices) are
underrepresented20 due to combinatorics of the residue
connections (Figure S3). Although the intrafaces were
extracted from the domains, the residue–residue propen-
sities in the intrafaces and the domains differ from each
other because of all residue contacts in the domains only
the ones across the intraface are included in the intraface
count (Figure S3b). The preference of residues to connect
to the ones of the same type was also stronger in the
interfaces than in the intrafaces. The likely reason is the
prevalence of homodimers in the interface set. As noted
in earlier studies,6 there is an evolutionary advantage of
favoring pairs of the same residue types between identical
chains, since in such pairs conservation of contacts
between different residue types requires two neutral/ben-
eficial mutations, whereas the contacts between identical
residues need only one.

The preferences for interactions among hydrophobic
amino acids for domains were stronger than that for the
intraface and interface, likely due to the tighter packing.

FIGURE 2 Examples of intrafaces. ECOD domain e1a8dA2 of tetanus neurotoxin protein. The domain is in green, and the two parts of

the intrafaces are in blue and red. (a) The full domain. (b) A small intraface. (c) A large intraface
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One noticeable difference between the intraface and inter-
face were the histidine contacts. Histidine is more com-
mon at interfaces, possibly because of its ability to
change its protonation state upon small shifts of the pH
values. This property could be useful for interfaces, while
not preferable (and thus, underrepresented) inside the
protein core.

It is noteworthy that comparison to our previous
analysis of pairwise preferences of the amino acids at
protein–protein interfaces5 shows quite a few differences.
These could perhaps be attributed to the much larger, yet
less redundant, dataset used here.

We also considered comparison of the intrafaces sepa-
rately with obligate and nonobligate (transient) complexes.
Due to the multiplicity and diversity of protein–protein
interactions in living systems, the obligate/transient dis-
tinction is far from straightforward. This naturally limits
the reliability of the methods that attempt to separate the
two, especially when it comes to high-throughput applica-
tions needed for our very large set of 23,878 interfaces. A
more reliable approach to divide an interface set into obli-
gate and transient interfaces is manual curation by exam-
ining the existing literature, which obviously limits the
size of the set. We calculated the residue–residue statistics
for such set of 298 complexes21 and compared it with the
statistics for our interface and intraface sets. For fair com-
parison, we applied the same procedure for extraction of
the interfaces from complexes to the 298-complex set as
we did for our set (see Section 2). It resulted in 122 obligate
and 176 transient dimeric interfaces. Due to the stark dif-
ference in the size of the full sets, by almost two orders of
magnitude, the dispersion of the calculated values for the
small set is far greater than that for the large set. Thus,
although there are similar patterns in these sets, the visual
comparison of the two (Figure S4) is not very useful. The

analysis showed that in comparison with the intrafaces,
the obligate interfaces have more contacts between histi-
dines, but less histidine–proline ones. Obligate interfaces
also have different patterns for arginine preferences, with
a clear abundance of the arginine contacts with cysteine,
glycine, proline, and tryptophan. In contrast, in compari-
son of intrafaces and the transient interfaces, there is a
clear distinction in the cysteine contacts, such as a larger
number of cysteine contacts with positively charged resi-
dues and the lack of those with most other amino acids,
especially the depletion of the cysteine bridges, in the tran-
sient interfaces. On the other hand, the intrafaces have
more histidine-polar uncharged and negatively charged
residue contacts.

The structural similarity of intraface and interface
was determined by MM-align all-to-all structural compar-
ison in a combined dataset of intraface and interface

FIGURE 3 Amino acids contact preferences. Color is according to the log odds of the contact (Gij, see Section 2) shown by the color

bar. (a) Full domains. (b) Intrafaces. (c) Interfaces

FIGURE 4 Number of clusters in combined interface and

interface sets. The number of mixed clusters, consisting of interface

and interfaces, is negligible compared to the number of clusters

that include either intraface or interface only
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together, with subsequent hierarchal clustering based on
the MM-scores. Figure 4 shows the distribution of clus-
ters depending on the clustering threshold. At a non-
random structural similarity threshold of MM-score =
0.6,22 as well as at less stringent MM-score thresholds 0.5
and 0.4, only a few mixed clusters, comprised of both
interface and intraface were present. At MM-score
threshold of 0.6, among the nonmixed clusters, 23,910
were interface only (19,922 at MM-score 0.5 and 14,368 at
MM-score 0.4) and 19,299 intraface only (16,205 at MM-
score 0.5 and 11,497 at MM-score 0.4). This indicates that
structural similarity of intraface and interface is rare.

Most clusters obtained with the nonrandom structure
similarity threshold were singletons (consisted of a single
member; Figure S5).

Analysis of the structures in the mixed clusters rev-
ealed that most were simple/trivial, such as: both sides
are β-sheets; both sides are α-helices; and simple combi-
nations of β-sheets and α-helices (Figure 5). We further
analyzed the SSE composition of the intraface and inter-
face. For each structure, two SSE (one from each side)
with the shortest distance between them were selected,
in all possible combinations of the SSE types (Figure S6).
Most SSE distance distributions for intraface and

FIGURE 5 Examples of

interface and interfaces within one

cluster. Interfaces are in cyan and

green and intrafaces are in yellow

and magenta. Top panel shows

interface and intraface separate and

aligned. (a) β-sheets, (b) α-helices,
and (c) α/β motifs. Bottom panel

shows D.melanogaster Pur-alpha

repeat III DNA binding protein 5fgo,

with intraface aligned to the

interface between chains
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interface were similar. However, the intraface β–β dis-
tances were significantly shorter than the ones in the
interfaces. We further analyzed the residue composition
of such nearest SSE. The overall composition of residues
in the intraface and interface was similar (Figure S7).
However, the composition of the nearest SSE (Figure 6)
had certain differences, especially in the β–β case: the
intrafaces had larger representation of some of the hydro-
phobic residues (Ile, Val, and Phe), whereas some of the
hydrophilic residues (Asp, Glu, and Gln) were more com-
mon in the interfaces. A possible reason for that is a
higher hydrophobicity and tighter packing of the protein
core compared to the interfaces having looser packing
and more loops to perform their function.

We did not perform structural comparison of the obli-
gate and transient interfaces (see above) to protein core
separately, because the comparison of the combined
interface set with the core did not yield structural similar-
ities except the trivial ones.

3.2 | Comparison of interfaces with
protein core

To extend the comparison of structural motifs in protein
domains and protein–protein interfaces we performed anal-
ysis that bypasses generation of the intraface library and
directly compares protein interfaces to protein domains by

structural alignment (see Section 2). We found multiple
cases where one component of the protein–protein inter-
face was structurally well aligned to part of a protein core at
the domain–domain interface. However, the cases when
both parts were identified within the same domain were
rare and simple/trivial such as the described above helixes.
Thus, overall, the results were in agreement with those
obtained from the comparison of intraface and interface.

One can expect that some structural motifs at the
domain–domain interfaces end up inside domains due to
domain fusion. However, once inside the domain core
they can evolve into motifs that are likely to be found in
the core. An example, in Figure 7, illustrates this sce-
nario. In this example, both parts of an interface con-
sisting of β-strands were found within the same domain
but in a different relative orientation than at the inter-
face. Interestingly, these parts were closer inside the
domain than at the interface, likely due to the evolution-
ary pressure for tighter packing inside the protein core.

3.3 | Implications for modeling of
protein complexes

The template-based approach for structural modeling of
protein complexes relies on experimentally determined
complexes of proteins similar to the targets. To detect an
appropriate template, a search against a diverse library of

FIGURE 6 Residue composition of the nearest secondary structure elements (SSE) in interface and interfaces. Other combinations

(helix–loop and beta–helix) had similar interface and interface distributions and thus are not shown. Overall, in close contacts, there is

preference for hydrophobic residues in intrafaces, and for titratable and (some of the) polar residues and glycine in interfaces
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protein–protein complexes is performed according to
some measure of target/template similarity, which is
often based on structure.16,17,23 Availability of good tem-
plates is a major factor affecting the quality of the predic-
tion. Thus, we asked a question: whether it is possible to
use intrafaces as templates for protein–protein docking
(prediction of interfaces).

To answer this question, we utilized template-based
docking protocol (see Section 2), using intrafaces as tem-
plates. To assess the docking performance, the success
rate was defined as a fraction of targets, for which at least
one in top N models was correct (see Section 2). The
results had an extremely low success rate (1–3%,
Figure S8), far smaller than the one based on interface
templates, which are typically in the 40–60% range.17

Coevolution of residues provides structural informa-
tion by inferring distances between co-evolving residues,
propagating beyond the first layer of residue–residue con-
tacts to more distant layers of coevolutionary relation-
ships. In recent years, there has been major progress in
utilizing this information for predicting protein struc-
tures, based on new ideas on how to use it, combined
with advances in machine learning (deep learning).24–27

A major obstacle to application of this approach to
protein–protein docking is a perceived lack of sufficient
amount of data on protein–protein interfaces needed for
the deep learning. Thus, it may be tempting to utilize
interface-like structural motifs from protein core as a
source of such information for docking. However, our
study showed that such intrafaces are significantly differ-
ent from the actual interfaces. Thus, a direct application
of such data from protein cores to protein docking may
not be productive.

On the other hand, the results of our study are prom-
ising with regards to the other major problem in applica-
tion of coevolutionary information to docking—a lack of
clarity on how to distinguish the intermolecular coevolu-
tionary information, directly related to docking, from the
not directly relevant intramolecular one. The recent pro-
gress in structure prediction of individual proteins takes
into account the covariation of residues that are not nec-
essarily in contact, to predict distances between them,
rather than simple contacts. The noncontact covariations
are weaker, but many, which compensates for their
weakness. In docking, such approach means that one has
to go deeper into the protein core to take into account
these noncontact covariations. At that point, it becomes
difficult to distinguish the intermolecular covariations
from the intramolecular ones (also because the inter-
molecular covariations are generally weaker than the
intramolecular ones). For that matter, the fact that the
intrafaces are significantly different from the interfaces
should be helpful in solving this problem.

4 | CONCLUSIONS

A systematic comparison of structural motifs at protein–
protein interfaces and inside protein cores was performed
based on various structural alignment strategies and sim-
ilarity metrics. A set of structural fragments that are con-
ceptually similar to protein–protein interfaces were
generated from protein cores (pseudointerfaces or
intrafaces) and systematically compared to the protein–
protein interfaces. The protein interfaces were also
directly aligned with the protein cores for additional
analysis. The results showed that the propensities largely
based on physical properties (such as charge-based and

FIGURE 7 Example of interface with both sides found in the

same domain. The interface parts (green and cyan) are aligned to

the domain (red). The alignments are shown (a) separately and

(b) together. The relative orientation of the interface parts aligned

to the domain is different from that within the interface
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hydrophilicity/hydrophobicity) are similar at the inter-
faces and inside the core. On the other hand, the propen-
sities significantly influenced by evolutionary pressure,
such as structural composition and packing, are largely
different. The results complement earlier studies, by tak-
ing advantage of the vast amount of currently available
structural data and new analysis tools.

Overall, the study provides insights into fundamental
properties of protein structure and interaction. At the
same time, it contributes to better understanding of the
ways to model protein complexes. Recent progress in
predicting protein structures to a significant extent has
been based on the ability to utilize residue coevolution
data and the advance of the deep learning
techniques.24–27 A similar development in the modeling
of protein complexes (protein docking) has not occurred
because of the supposed lack of data on protein–protein
interfaces required for the deep learning. Structural
motifs in the protein core could potentially complement
such data. However, our results showed that these motifs
are significantly different from those at protein–protein
interfaces. Thus, in this regard, the direct use of struc-
tural information from protein core may not be beneficial
for docking. However, the revealed difference between
the intraface and interface may be useful in solving
another major obstacle to application of coevolutionary
data in docking—discrimination of the intramolecular
information, which is not directly relevant to the predic-
tion of protein complexes. The data and the in-house
code to generate the results are available at https://gitlab.
ku.edu/vakser-lab-public/intra-faces.
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