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ABSTRACT

ConSurf-DB is a repository for evolutionary conser-
vation analysis of the proteins of known structures
in the Protein Data Bank (PDB). Sequence homo-
logues of each of the PDB entries were collected
and aligned using standard methods. The evolution-
ary conservation of each amino acid position in the
alignment was calculated using the Rate4Site algo-
rithm, implemented in the ConSurf web server.
The algorithm takes into account the phylogenetic
relations between the aligned proteins and the sto-
chastic nature of the evolutionary process explicitly.
Rate4Site assigns a conservation level for each
position in the multiple sequence alignment using
an empirical Bayesian inference. Visual inspection
of the conservation patterns on the 3D structure
often enables the identification of key residues
that comprise the functionally important regions
of the protein. The repository is updated with the
latest PDB entries on a monthly basis and will be
rebuilt annually. ConSurf-DB is available online at
http://consurfdb.tau.ac.il/

INTRODUCTION

The study of a protein raises many questions: What the
protein function is? Does it have more than one function?
How does the protein perform its functions? Is it acting
alone? Where/when is the protein active? Where are the
functional regions of the protein and what their nature is?
Each of these questions can be further refined into addi-
tional, more specific, questions.

Advances in sequencing technologies produce ever
larger databases containing protein sequences from a
large collection of species. Within these databases one
can find many protein families that can be analyzed in
search for functional regions. Generally speaking, protein
function is mediated through clusters of evolutionarily
conserved amino acids that are located in close vicinity
to each other. These clusters may be involved in enzymatic

activity, ligand binding, protein—protein interactions, or in
the folding and stabilization of the protein’s architecture
(1). Typically, the detection of these clusters is useful for
initial investigation of a protein by characterizing their
properties. In addition, correlating the conservation pat-
tern with other data is often insightful. The ConSurf-DB
leverages the protein databases in order to aid in the detec-
tion of such clusters.

We introduced the original ConSurf, available as an
online server (2) at http://consurf.tau.ac.il/, back in 2001
(3). ConSurf was developed for the identification of func-
tional regions in proteins based on the conservation of
amino acids, taking into account the phylogenetic rela-
tions between the proteins. In 2005 we introduced the
ConSurf-HSSP (4) database which was a pre-calculated
repository of ConSurf results based on multiple sequence
alignments (MSAs) extracted from the HSSP database (5).
The MSAs in HSSP do not include the gaps in the query
sequence, i.e. positions in the aligned sequences which do
not have corresponding positions in the query sequence
are removed from the alignment. Consequently, the
phylogenetic reconstruction of the protein family is
prone to errors. The ConSurf-DB, presented here, replaces
ConSurf-HSSP as our repository of pre-calculated
ConSurf results. The MSAs in the ConSurf-DB include
all sequence data needed for the phylogenetic reconstruc-
tion, it also uses a more advanced Rate4Site (6) algorithm
utilizing Bayesian inference rather than the Maximum
Likelihood estimate that was used in ConSurf-HSSP.
The conservation results of ConSurf-DB are presented in
much more standard and cross platform formats.

Other tools for predicting functional sites based on evo-
lutionary conservation include the Evolutionary Trace
Viewer (7) and SiteFiNDER|3D (8). Like ConSurf-DB,
they take advantage of the evolutionary relationship
between homologues to detect regions that are likely to
be of functional importance. Other tools take a different
approach: The HotPatch (9) tool predicts functionally
important regions by performing a statistical analysis
and comparing the protein’s surface against the surfaces
of a large set of proteins (not necessarily homologous to
that protein) whose functional sites are known. For a brief
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comparison of ConSurf-DB with these tools please see the
supporting materials.

The sequence homologues of each protein in
ConSurf-DB are collected using PSI-BLAST (10) and
then automatically filtered in order to represent reliably
and comprehensively the protein family. This process
requires a delicate balance between two opposing effects.
A conservative search would yield only very close homo-
logues and would make it virtually impossible to discrimi-
nate between amino acid positions that are truly
important and those that did not change because of insuf-
ficient evolutionary time. On the other hand, an overly
permissive search may falsely detect non-homologues
that do not share the same structure and/or function.
We conducted preliminary investigations and came up
with a scheme, presented below, which balances between
these two extremes. The selected homologues are aligned
using MUSCLE (11) and are available for use as part of
the ConSurf-DB repository.

The Rate4Site program is subsequently used to con-
struct a phylogenetic tree and calculate conservation
scores. Rate4Site builds a phylogenetic tree of the homo-
logues using the neighbor joining algorithm (12). Using an
empirical Bayesian approach it calculates the evolutionary
rate of each amino acid position of the MSA, taking into
account the stochastic nature of the evolutionary process.
The amino acid evolution is traced using the JTT (13)
substitution model. High evolutionary rate represents a
variable position while low rate represents an evolutiona-
rily conserved position.

The conservation scores are normalized so that the
average over all residues is zero, and the standard devia-
tion is one. Low (negative) scores indicate the conserved
positions while the high scores indicate the variable ones.
The normalized scores are then binned into the 1-9 color
codes presented in Figure 1, representing the conservation
grades and projected on the 3D model of the query pro-
tein, where 1 corresponds to maximal variability and 9 to
maximal conservation. It is important to note that even
though the same scale is used in all the protein families,
the conservation scores are not absolute and hence, com-
paring the conservation scores between different protein
families might be misleading.

There are several ways to access the repository. For
visual inspection of one or few proteins, a web interface,
available at http://consurfdb.tau.ac.il/, supports 3D visua-
lization (using FirstGlance in Jmol) and access to all sup-
plementary data. The entire repository can be downloaded
via ftp or rsync and used for large-scale automated
studies. For advanced uses, involving re-building of
variants of the repository, the build scripts can be down-
loaded from the ConSurf-DB web site. We will be glad to
assist in adopting them to different environments.

METHODOLOGY

Building the ConSurf-DB repository consists of four
stages: scanning the PDB (14), building MSA files, calcu-
lating the conservation scores and formatting the results
(supporting material, Figure 2). This design was chosen to
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allow reusability of the scripts by controlling the data at
each step. For instance, an MSA file can be created by
simply inputting a FASTA format sequence file to the
MSA building script or if a Rate4Site output was obtained
using a unique set of parameters, it can be used to create
3D visualization. A monthly update process will calculate
the conservation profiles for new PDB entries. In the
annual refresh, the entire database will be re-calculated
based on MSAs created from the latest sequence
databases.

The ConSurf-DB build process is completely automated
and starts by scanning the PDB. Each PDB entry can
contain one or more chains that are handled separately.
When a new PDB entry is found, the SEQRES section of
each chain passes through three filters: ‘type’, ‘length’ and
‘modifications’. Nucleic acid chains are discarded by the
‘type’ filter, short amino acid chains of less than 30 resi-
dues are discarded by the ‘length’ filter as they do not
contain enough data for reliable phylogenetic tree recon-
struction. Finally, the ‘modification’ filter converts a list of
non-standard residues into their closest standard amino
acid form, and discards highly modified chains with over
15% non-standard residues. The modifications are noted
and saved as part of the chain’s supplementary data.

The next two steps rely solely on the sequence of amino
acids in the chain. Identical sequences are grouped and
processed once in order to avoid repetitive calculations.
The second step in the process is the creation of the
MSAs. Using PSI-BLAST we find potential homologues
in the UniProtKB/SwissProt (15) database using an
e-value cutoff of 107 and three iterations. The results are
forwarded to a filtering script that removes redundant
sequences according to three criteria: (i) sequence
identity—sequences with more than 95% identity to the
query sequence are removed; (i) sequence length—
sequences shorter than 60% of the query sequence are
removed; (iil) maximum overlap—since BLAST is a local
alignment algorithm, fragment sequences that overlap by
over 10% are also removed. Next, redundant sequences are
removed using CD-HIT (16); a maximum of the 300 most
significant hits (i.e. sequences with the lowest e-values) are
selected as homologues, and MUSCLE is used to align
them. If a total of less than 50 homologues are found, the
entire process is repeated using the Clean_UniProt data-
base. Clean_UniProt is a modified version of the UniProt
database (15) aimed to screen the more reliable sequences
based on two criteria: (i) if the ‘Description’ (DE) field
contain ‘Disease’, ‘RIKEN’, ‘variant’, ‘mutation’,
‘mutant’ or ‘whole genome shotgun sequence’ the sequence
is removed; (ii) if the database is “TrEMBL’ and the
‘Comments’ (CC) lines contain the word ‘CAUTION’ the
sequence is removed. The Clean_UniProt includes non-
reviewed entries and is about 10 times larger than
UniProtKB/SwissProt. The number of chains supported
by each sequence database is presented in Table 2 of the
supporting materials.

The third and most CPU-bound step is the execution of
Rate4Site to produce the evolutionary scores for each
amino acid position in the protein. A Condor (17) job
system that is part of the European grid network was
used to this end, which allowed us to complete this part



of the process for all the polypeptide chains in the PDB
within less than 5 days. Rate4Site output includes a
Newick formatted phylogenetic tree of the homologues
and a list of conservation scores for each of the amino
acids positions in the original sequence.

The last step includes parsing of the Rate4Site scores
and formatting them to create a range of output data.
The scores are normalized and classified into nine conser-
vation levels, as explained in the Introduction section
above. These levels are subsequently used for visualization
(e.g. Figure 1), using RasMol (18) coloring script and
FirstGlance in Jmol. The confidence interval, which is
assigned to each amino acid position, represents the reli-
ability of the conservation score of that position. For
example, a conservation score for a position that consists
mostly of gaps will have a large confidence interval, i.e.
low reliability. Low reliability positions are marked yellow
in the 3D visualization (2).

All data including intermediate calculations are saved
in each chain’s directory and a user-friendly HTML
page is created to allow viewing the results using a web
browser.

ConSurf-DB IN NUMBERS

The build statistics for the first full version of the
ConSurf-DB database are presented in Table 1. The initial
version of ConSurf-DB was built based on a PDB

PDB ID: 5cyt | B

Variable Average
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containing 48091 entries, using PSI-BLAST v2.2.14 on
UniProtKB/SwissProt v54.6 and Clean_UniProt contain-
ing 4225158 sequences. A total of 117384 chains were
found, 30918 of which were unique amino acid polypep-
tides, conforming to our length and modification percen-
tile requirements.

At peak level, the build process was using 70—150 CPUs,
ranging from Pentium III to Xeon. The total CPU time
for building the entire ConSurf-DB database was ~14 000
CPU hours with an average CPU time of ~30min per
chain.

EXAMPLE AND COMPARISON

The cytochrome ¢ protein (PDB ID: 5cyt) can be found in
many species including plants, animals and unicellular
organisms. It comprises a single polypeptide chain and is
absorbed on the inner membrane of the mitochondrion.
It participates in the electron transport chain by carrying
one electron using its HEME prosthetic group. There are
many cytochrome ¢ homologues in UniProtKB/SwissProt
and many of them are highly similar to each other.
Therefore, the MSA that was constructed using the
default parameters of the ConSurf server includes
50 homologues of over 75% sequence identity to the
query with an average of 83% and SD of 3.3%. Thus,
using this default means of collecting homologues, the
vast majority of the residues appeared to be invariant,

Conserved Insufficient
data

Figure 1. Cytochrome ¢. (A) The conservation coloring profile from the ConSurf-DB repository, mapped onto a space-filling representation of the
protein. The conservation coloring scale is shown below. The HEME group, in stick representation, is colored green. (B) The same view as calculated

by the ConSurf server using default parameters.

Table 1. Build statistics for the first full version of ConSurf-DB dated February 2008

PDB chains MSA sizes

PDB entries processed 48091 Chains with less than 5 homologues (insufficient) 1348

Total chains found 117384 MSAs Created 29570
Filtered Chains with 5-10 homologues 859
Chains containing nucleic acids 8237 Chains with 11-20 homologues 1059
Chains of less than 30 residues 5594 Chains with 21-50 homologues 2332
Chains containing more than 15% modifications 281 Chains with 51-100 homologues 7297

Total chains meeting our requirements 103272 Chains with 101-200 homologues 14945

Total distinct chains meeting our requirements 30918 Chains with 201-300 homologues 3078
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and was assigned the highest conservation level
(Figure 1B, maroon). Additionally, in some of the residues
the data was considered as insufficient (Figure 1B, yellow).
Overall, the results were unsatisfactory.

The approach that was used to create the ConSurf-DB
managed to deal much better with cytochrome ¢ and its
ample homologues. From over 180 similar sequences that
were found in UniProtKB/SwissProt, 123 were selected by
the ConSurf-DB filtering process as homologues to be
aligned and analyzed. Sequence identity to the query
ranged from 22% to 91% with an average of 58% and
SD of 17.6%. Thus, the evolutionary profile obtained
makes much more sense in view of the protein function:
Highly conserved residues delinecate the HEME binding
site and no position in the MSA was classified as insuffi-
cient (Figure 1A). The MSA in ConSurf-HSSP for cyto-
chrome ¢ shows similar sequence identity values.

Comparison with results from the ‘Evolutionary Trace
Viewer’, ‘SiteFiNDER 3D’ and ‘HotPatch’ servers can be
found in Figure 3 of the supporting materials.

CONCLUSIONS

ConSurf-DB is a new addition to the ConSurf set of online
tools for creating evolutionary conservation profiles of
proteins. In most cases it gives better results than the
ordinary ConSurf running with default parameters due
to the more advance homologues selection process.
Moreover, since all the data is pre-calculated there is no
waiting time. This makes ConSurf-DB a preferred tool for
initial investigation of proteins. The evolutionary profile
of the protein can be correlated with results obtained using
other computational tools and experimental data to gain
functional insight. The conservation profiles can also be
linked to other online web servers.

It is important to note that the quality of the results of
any evolutionary algorithm depends on the amount of
homologous proteins and their diversity over the phyloge-
netic tree. For that reason the ConSurf-DB repository will
be rebuilt annually to incorporate new homologues, which
were sequenced during the year.

The automatic procedure that was used here represents
a quasi-optimum with regards to the search for homo-
logous proteins and their alignment. However, very
often manual intervention can be used to improve this
process further, especially when conducted by an expert
on a specific protein. Thus, users may still prefer to use the
original ConSurf server that allows inputting custom
MSAs and phylogenetic trees, as well as changing key
parameters.

Generally speaking, functional regions are highly con-
served. However, it is noteworthy that there are exceptions
to this rule. One particularly interesting case is the recog-
nition region in antibodies and MHC molecules, which are
hyper-variable (19). The ConSurf-DB can be used to
recognize these regions as well, if the user knows what
to look for.

It is also important to notice that in some cases we had
to abort the ConSurf analysis of chains not conforming to
our basic thresholds of length, modifications percentile
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and the number of homologues found. One of the key
reasons for that was an insufficient number of homo-
logues. It is anticipate that as the various genome and
meta-genome projects are moving forward and sequences
accumulate, we will be able to cover the entire PDB. Until
then, complementary tools, such as THEMATICS (20)
and HotPatch, may be used to find functional regions
without the need to look for homologous proteins.

We are hopeful that ConSurf-DB will be a valuable tool
for researchers and anticipate that it will assist in the dis-
covery of protein function. To this end, we are constantly
working on adding ConSurf-DB results to online protein
databases. The PDBsum (21) database will present direct
links to ConSurf-DB and the Proteopedia Project (22) will
integrate the ConSurf-DB data, allowing users to browse
conservation scores without leaving the site.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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