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Proteins share similar segments with one another. Such “reused
parts”—which have been successfully incorporated into other pro-
teins—are likely to offer an evolutionary advantage over de novo
evolved segments, as most of the latter will not even have the
capacity to fold. To systematically explore the evolutionary traces
of segment “reuse” across proteins, we developed an automated
methodology that identifies reused segments from protein align-
ments. We search for “themes”—segments of at least 35 residues
of similar sequence and structure—reused within representative
sets of 15,016 domains [Evolutionary Classification of Protein Do-
mains (ECOD) database] or 20,398 chains [Protein Data Bank (PDB)].
We observe that theme reuse is highly prevalent and that reuse is
more extensive when the length threshold for identifying a theme
is lower. Structural domains, the best characterized form of reuse in
proteins, are just one of many complex and intertwined evolution-
ary traces. Others include long themes shared among a few pro-
teins, which encompass and overlap with shorter themes that recur
in numerous proteins. The observed complexity is consistent with
evolution by duplication and divergence, and some of the themes
might include descendants of ancestral segments. The observed re-
cursive footprints, where the same amino acid can simultaneously
participate in several intertwined themes, could be a useful concept
for protein design. Data are available at http://trachel-srv.cs.haifa.
ac.il/rachel/ppi/themes/.

protein space | protein evolutionary patterns | protein function
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Studying segment reuse across proteins can reveal the me-
chanics of protein evolution (1–9). Identifying reuse also has

many practical applications, and thus, many tools have been
designed to harvest the reuse signal (e.g., for prediction of structure
and function) by comparing protein structures (10, 11) and se-
quences [e.g., the hiddenMarkov model (HMM) aligners HHSearch
(12) and HMMER (13)]. However, even if one has a sensitive and
accurate tool to compare proteins, the challenge of quantifying reuse
across the entirety of protein space remains. In the context of
structure reuse, several studies have attempted to evaluate the extent
to which particular components recur among proteins; these studies
have addressed several different scales, ranging from a few residues
or fragments (14, 15) to sets of secondary structure elements (16–18)
and full domains, or folds (19, 20). The reuse of protein segments is
not uniform. Some segments are reused extensively, whereas others
recur only rarely; scholars have described the reuse patterns of
protein segments of various lengths by the power law distribution
(15, 21–27). Structure reuse may reflect the recurrence of biophysi-
cally favorable conformations (18, 27–30). However, sequence reuse
and in particular, reuse of substantial segments hints at an evolu-
tionary relationship among proteins.
Domains are the prime example of protein segments that are

reused across multiple proteins. Domains duplicate, diverge, and
recombine to form protein chains (21). Thus, a dominant view
among protein scholars is that domains are the “atomic” evolu-
tionary units (4, 31–33). The exact definition of a domain is not
fully agreed on, because the term is used to refer to several things
that often, but not necessarily, coincide: (i) a reused element,

(ii) an independently folded unit, and even, (iii) a structural region
(34). Thus, the de facto definition of a domain is an entity in one of
the domain databases [e.g., Class Architecture Topology Homol-
ogy (CATH), Structural Classification of Proteins (SCOP), and
Evolutionary Classification of Protein Domains (ECOD) (9, 35,
36)], and these were generally selected for inclusion based on re-
use. The interpretation of the definition of a domain varies among
the databases. For example, only 60% of CATH domains have a
similar SCOP counterpart (34, 37, 38). The lengths of the domains
are assumed to be around 100 residues (39), and indeed, the do-
main lengths in CATH, SCOP, and ECOD follow very similar, and
narrow, distributions around this mean (refs. 35, figure 8B and 40).
The view that domains are the only atomic evolutionary unit is

challenged by evidence of substantial cross-protein similarities at
the subdomain level (1, 3, 6, 41, 42) dating back to the work of Eck
and Dayhoff (43), which was carried out even before the concept of
domains had been introduced. Such similarities were identified for
segments of different lengths based on similar sequences, struc-
tures, or both and described in the literature under different names.
For example, several investigations identified cross-fold similarities
of short and long segments (27, 44–47) and attributed subdomain
similarities to “domain atrophy” (48). Such similarities have also
been described as protein motifs (16, 49–52). To better understand
the evolution of proteins, Lupas and coworkers (1, 3) documented
shared segments, referred to as “antecedent domain segments.”
Following a similar reasoning, Frenkel and coworker (53, 54) de-
scribed the reuse of (very) short protein segments, referred to as
“modalities,” and Goncearenco and Berezovsky (55, 56) examined
reuse of closed rings referred to as “elementary functional loops.”

Significance

We question a central paradigm: namely, that the protein do-
main is the “atomic unit” of evolution. In conflict with the current
textbook view, our results unequivocally show that duplication
of protein segments happens both above and below the domain
level among amino acid segments of diverse lengths. Indeed, we
show that significant evolutionary information is lost when the
protein is approached as a string of domains. Our finer-grained
approach reveals a far more complicated picture, where reused
segments often intertwine and overlap with each other. Our
results are consistent with a recursive model of evolution, in
which segments of various lengths, typically smaller than do-
mains, “hop” between environments. The fit segments remain,
leaving traces that can still be detected.
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Clearly, reuse is common in protein space, but many details of
the overall pattern of reuse are yet to be described. Here, we
focus on the relationship between the length (in residues) of the
reused segments and the extent of reuse. Our goal is to differ-
entiate between two alternative evolutionary scenarios: (i) do-
mains are the minimal evolutionary units vs. (ii) shorter (and
longer) amino acid segments duplicate and mutate as well. By
studying the properties and extent of reuse patterns, we attempt
to elucidate whether a simple segmentation of protein chains
into domains (i.e., nonoverlapping segments of fixed length) is a
sufficiently detailed abstraction of the data.
To this end, we present an automated pipeline to identify seg-

ments of various lengths of reused sequences that also have similar
structures; these segments are referred to as “themes” (as in “var-
iations on a theme”). To derive a set of candidate themes, we in-
troduce an efficient dynamic programming algorithm that finds an
optimal segmentation of each protein based on all of its HHSearch
alignments. Using this framework, we identify themes of lengths
ranging from 35 to 200 residues. Reuse across protein space can
then be quantified: we show that, when considering increasingly
shorter themes (i.e., of fewer residues), reuse increases. The results
indicate that duplication had happened for a range of segment
lengths and is not limited to entities around 100 residues (i.e., do-
mains). We show examples where elaborate patterns of reuse offer
hints regarding the evolutionary process. Consequently, we argue
that one must take a more holistic view and consider reuse of el-
ements of diverse sizes rather than rely only on the segmentation of
protein chains into a set of nonoverlapping domains.

Data Compilation and Processing
We introduce an algorithm to optimally identify themes of dif-
ferent lengths and use it to analyze reuse in two datasets of
proteins of known structure: (i) a set of 28,223 [70% non-
redundant (NR)] domains referred to as the ECOD dataset and
(ii) a set of 31,417 (70% NR; Sep6_2014) chains referred to as
the Protein Data Bank (PDB) dataset. Using HHSearch (12), we
align all-vs.-all within these sets and calculate for each significant
alignment the percentage of similarity of aligned residues and
the rmsd of the Cα atoms of the aligned residues. We construct
similarity networks, where the nodes are the dataset proteins and
the edges are alignments, for which the calculated sequence
similarity is greater than 40% and the calculated rmsd is lower
than 3.5 Å (45). Because we identify reuse based on alignments,
reuse can only be found among proteins in the same connected
component in the similarity network. Hence, within the ECOD
network, we focus on the single largest connected component of
15,016 domains, and in the PDB network, we focus on the
20,398 chains in the connected components of at least 10 chains.
Our procedure has two steps. (i) The split step identifies reused

nonoverlapping themes. We run this step for each protein and all
of its alignments. (ii) In the search-and-join step, for each theme
identified in the first step, we collect all variations of that theme by
traversing the network. For the ECOD dataset, we also further
group themes on the basis of their structural similarity.
The split step identifies the most extensively reused pieces in

each protein (regardless of whether they are domains or chains)
that are longer than some prespecified threshold (Fig. 1); these
are the candidate themes. Given a protein and the set of its sig-
nificant alignments, we can calculate for each range of residues s-e
a reuse score. The reuse score is the sum of all of the substitution
matrix BLOSUM-62 scores for the residues s-e and the residues
aligned to them (including gap penalty) in any of the alignments
that are matched to the protein. Searching for the highest scoring
combination of nonoverlapping themes by enumerating all possible
combinations is a very expensive computation, because there are
many such combinations. Instead, we use a dynamic programming
algorithm to efficiently identify the highest scoring combination (SI
Appendix, Methods has details). The split step ends by providing a
list of candidate themes described as protein ranges [e.g., P(s-e)].
We ran the split step repeatedly, with different minimal theme
lengths. For the ECOD set, we considered themes of at least 35–

65 residues, and for the PDB set, we considered themes of at least
35–200 residues.
The search-and-join step groups themes to reveal overall reuse

in protein space. Given a candidate theme T (protein P, residues
s-e), we identify all of the variations of T in the network. A variation
of T, denoted T′, is a range of residues in another protein that are
aligned to T and similar: namely, there is a meaningful alignment to
more than 85% of the residues of T, with a sequence similarity of
more than 50% and structure similarity lower than 3.5 Å rmsd over
the aligned residues. When we find a variation T′, we join it to the set
of variations initiated by T and repeat the process to include in the
set any additional themes that are variations of a theme already in
that set (T, T′, or any other theme that was added in the process). If
an added variation is also one of the candidate themes identified in
the split step described above, we merge its set of variations into the
set of T. We denote by S the set of all identified themes.

Results
Reuse Is Prevalent in Protein Space. Focusing on theme reuse, we
count, for every theme T ∈ S, the number of unique proteins
(domains in the ECOD set, chains in the PDB set) that it appears
in or equivalently, its number of variations; we refer to this value as
the “size” of the theme (a concept that is distinct from the length of
the theme or the number of residues that it contains) and denote it
by sizeSðTÞ. SI Appendix, Fig. S1A, and Fig. 2 show, for the ECOD
and PDB datasets, the number of themes detected (for different
minimal residue numbers or “theme lengths”) as a function of
sizeSðTÞ. The reuse pattern, sorted by sizeSðTÞ along the x axis, is
similar for all lengths and in both datasets: many themes are used
only occasionally, and a few are used extensively. We further
cluster the themes of the ECOD dataset to create structurally
similar “superthemes” (rmsd lower than 4.5 Å). SI Appendix, Fig.
S1B shows the number of superthemes vs. the number of variations
in (or the size of) the supertheme: we see that, when considering
increasingly shorter themes, there are more themes and that they
are of larger size, but the distributions stay qualitatively the same.

Reuse Increases with the Decrease in Theme Length. Focusing on each
protein and fixing a set of detected themes S, we calculate for

protein P:

aligned protein 1 

aligned protein 2 

aligned protein 3 

aligned protein 4 

For every protein find all meaningful 
alignments

The theme score is the sum of 
alignment scores restricted to 
its range of residues 

Find (efficiently using dynamic programming) the highest scoring themes

theme T: s e

BScore(                    ) +
Score(              ) = Score(         ) = 

BScore(                    ) +

BScore(                    ) +

BScore(                    ) 

theme_A theme_B

T

A

C

B

Fig. 1. (A) The most reused themes in a protein P are derived from the set of
meaningful alignments of P and other proteins: in this example, proteins 1–4.
For any possible theme (for example, theme T that spans residues s-e), we can
consider the parts in the alignments that are restricted to these residues, which
are marked here by black rectangles. (B) We assign a score for every theme
within the protein P based on the scores of these restricted parts, which is the
sum over the BLOSUM-62 scores for the aligned parts. (C) Our goal is to
identify the largest set of nonoverlapping themes (for example, theme_A and
theme_B), such that the sum of these scores is optimal. Rather than exhaustively
scoring all possible theme end points to find the optimal one, we find it more
efficiently using dynamic programming (SI Appendix, Methods has details).
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each residue r the maximal size of a theme that it is part of:
cSðrÞ=maxr∈TðsizeSðTÞÞ (i.e., the theme with greatest number of
variations). Then, we use cSðrÞ values to calculate the total number
of residues that appear in any theme in S [i.e., all residues for
which cSðrÞ> 1] (Eq. 1). For a set of proteins Π, the total number
of residues in Π that participate in any theme is

recurring  residues=
X

P∈Π
jfr∈PjcSðrÞ> 1gj. [1]

To show another perspective of reuse, we also calculate the number
of unique residues in the dataset (Eq. 2) (57). Residues in a theme T
are variations of the same theme and should be counted only once
rather than sizeSðTÞ times in a straightforward count. Thus, we sum
1=sizeSðTÞ for each residue in T: the sizeSðTÞ contributions from var-
iants of Twill total one for each residue along T, as it should. Because a
residue r may be part of more than one theme, we sum 1=cSðrÞ:

calculated  number  of   unique  residues=
X

P∈Π

XjPj

r=1

1
cSðrÞ. [2]

If there is no reuse, the number of unique residues will equal
the total number of residues in all proteins in the set. Every
theme that we detect shows reuse and can decrease this value by

the number of residues that are similar to ones that were already
counted. SI Appendix, Fig. S2 shows three toy examples of a
small protein dataset, its varying lengths themes, and how
changes in reuse as a function of the minimal theme length are
manifested by the measures in Eqs. 1 and 2.
Fig. 3 shows the reuse pattern of themes in the seven-blade pro-

peller domain e2xyiA1 from the ECOD dataset. When considering
alignments that conform to the abovementioned conservative
thresholds, we find the most reused theme in 34 neighboring do-
mains; these residues of e2xyiA1 are marked in purple in Fig. 3, and
the list of domains is bounded in a purple box in Fig. 3. A larger
(encompassing) part of the domain e2xyiA1 appears in a smaller set
of 33 neighbors (shown in blue in Fig. 3). Similarly, increasingly
larger (encompassing) parts of the domain appear in decreasingly
smaller sets of neighbors; we color these in light blue, green, yellow,
orange, and red in Fig. 3. The largest part (red in Fig. 3), which
covers almost the whole domain, appears in four other domains.
Using our notation, the residues marked in purple in Fig. 3 are part
of a theme of sizeSðTÞ = 35 (e2xyiA1 + 34 additional domains):
hence, these residues contribute 1/35 to the total unique count. At
the other extreme, the residues marked in red in Fig. 3 (part of the
longest theme) do not overlap with any of the shorter themes and
are only part of a theme of sizeSðTÞ = 5, and thus, they each con-
tribute 1/5 to the total unique count. We use the per residue
measures of reuse in Eqs. 1 and 2 to capture the details of the reuse
pattern as manifested in this example. In SI Appendix, we survey
common themes and provide an online interface to explore them
(trachel-srv.cs.haifa.ac.il/rachel/ppi/themes/).
Fig. 4 plots the number of residues detected in themes (Fig. 4 A

and C) and the calculated number of unique residues (Fig. 4 B and
D) vs. the minimal number of residues in the set of themes S for the
ECOD and PDB datasets. In both cases, when considering sets of
themes with minimal lengths that are increasingly shorter, the total
number of residues in detected themes increases (Fig. 4 A and C),
and the calculated number of unique residues decreases (Fig. 4 B and
D). This quantifies the fact that reuse in protein space is more
prevalent when considering increasingly shorter themes. For the PDB
dataset, the minimal lengths of the themes range from 35 to 200,
including themes of 100 residues, or the average lengths of domains,
which do not show any unique or singular pattern. Actually, relying
only on a limited range of theme lengths to describe reuse in protein
space leads to detecting far less reuse as quantified by a greater
calculated number of unique residues: SI Appendix, Fig. S3 compares
the calculated number of unique residues when considering only
themes of limited lengths, showing that, in all cases, considering all
theme lengths leads to detection of significantly more reuse.
As the minimal threshold for theme length decreases, the calcu-

lated number of unique residues also decreases. The first reason for
this is the increase in the total number of residues with cSðrÞ> 1 (Fig.
4 A and C). SI Appendix, Fig. S4 shows that this increase is because of
a twofold effect: (i) as theme length decreases, themes are detected
in more proteins in the dataset, and (ii) the coverage (i.e., the per-
centage of residues in a protein described by themes) increases.
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Fig. 2. Usage of the protein themes. Log–log plot of the number of themes vs.
theme size [i.e., number of variations per theme for the PDB datasets (for ECOD
dataset see SI Appendix, Fig. S1A)]. Results for themes of different minimal
lengths are presented using different colors. In all cases, we see that there are
many themes with a small size and few large-sized themes; we also see that
reuse increases as the minimal theme length decreases.

Fig. 3. Recursive reuse of parts of e2xyiA1 in the
ECOD dataset. Reuse manifests a Russian nested
dolls effect (in sequence; not to be confused with the
structural one described in refs. 8 and 9). The themes
are marked on the e2xyiA1 domain. The shortest
theme, shown in purple, appears in the largest set of
domains (listed within the purple box). A longer
(encompassing) theme, shown in blue, appears in
fewer domains. Similarly, increasingly longer themes
of e2xyiA1, shown in light blue, green, yellow, or-
ange, and red, are found in increasingly smaller sets
of domains. This example manifests the complexity
of the reuse pattern in evolution, where the same
amino acid can appear in more than one theme, and
shows that, to accurately describe reuse of a domain,
we must consider a per residue resolution.
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SI Appendix, Fig. S5 shows an example for the second effect, where
new (shorter) themes emerge in a different region of domain e3nytA1
(SI Appendix, Fig. S5, orange) and in different domains; a nested
pattern also appears (SI Appendix, Fig. S5, red, yellow, and
green). SI Appendix, Fig. S4 A and B shows that, in the ECOD
dataset, the number of domains containing themes increases
from 2,927 to 7,468 as the minimal theme length decreases from
60 to 35 residues, and coverage within these domains increases
from 55 to 81%. Similarly, SI Appendix, Fig. S4 C and D shows
that, in the PDB dataset, the number of chains containing themes
increases from 4,080 to 15,998 as the minimal theme length de-
creases from 200 to 35 residues, and coverage within these do-
mains increases from 83 to 91%.
Fig. 3 shows another factor contributing to the decrease in the

calculated number of unique residues: within the set of residues in
the seven-blade propeller domain e2xyiA1 that satisfies cSðrÞ> 1, the
value of cSðrÞ increases as the minimal theme length decreases. This is
typical: SI Appendix, Fig. S6A shows that, in the ECOD dataset, as the
minimal theme length decreases from 60 to 35 residues, the average
cSðrÞ increases from 3.8 to 26. Likewise, SI Appendix, Fig. S6B shows
that, in the PDB dataset, as the minimal theme length decreases from
200 to 35 residues, the average cSðrÞ increases from 13.7 to 33.1. That
is, many amino acids are included in more than one theme.

Divergent vs. Convergent Evolution in Our Dataset. The sequence
similarity threshold needs to be sufficiently high, so that pairs marked
as evolutionarily related are (mostly) caused by divergent evolution.
The concern here is that a sequence similarity threshold that is too
small may lead to many false positives: cases which are marked as if
they diverged from a common ancestor, although they have not. In
support of the 50% threshold being sufficiently high is that it corre-
sponds to ∼40% sequence identity on average, and almost all pairs in
the dataset have a sequence identity greater than 30% (SI Ap-
pendix, Fig. S7). Another concern is that the sequences may be
similar, because they have converged because of their similar
structures (recall that we enforce structural similarity). To address
this, we consider 23 helix–strand–helix–strand themes of similar
structures (grouped together in the second level of clustering),
which we identified with the 50% threshold. This supertheme in-
cludes 75 variations from 62 domains of the a/b barrels and a/b
three-layered sandwiches classes (in five X-level classifications).
We use the global Needleman–Wunch sequence alignment to

compare all-vs.-all 75 segments sequences and collect the sequence
similarity, identity, and raw scores. SI Appendix, Fig. S8 plots the
distributions of these measures for the 146 pairs of segments that
are in the same theme (that is, have similar sequences and struc-
tures) and the 2,629 pairs that are in different themes that share
only a similar common structure. We see that the similarity of the
sequences of similar structures (or similar biophysical properties) is
markedly lower than that of the ones within our themes (P value <
10−15 in all three cases, Wilcoxon test), implying that the similarity
within themes is not merely a consequence of similar structures.
We also consider a less strict threshold for identifying evolu-

tionarily related segments. SI Appendix, Fig. S9 shows how reuse in
the ECOD dataset varies with minimal theme length when using a
lower threshold of 40% sequence similarity. The lower threshold
identifies more segments as evolutionarily related, leading to a
greater total number of residues in any theme and a smaller total
number of unique residues. However, regardless of the threshold
used, the fundamental observation holds: when considering in-
creasingly shorter minimal theme lengths, we detect more reuse.
Because we use conservative similarity thresholds (a shared seg-

ment length of at least 35 residues), most of the theme reuse that we
observe emerges among similar proteins. Nonetheless, some of our
themes appear to “hop contexts.” In the example in Fig. 3, most of
the domains that share similar themes with e2xyiA1 are close
neighbors and have seven-blade propellers; however, among the
domains that share four blades with e2xyiA1, six are eight-blade
propellers (orange-colored nodes in SI Appendix, Fig. S10). SI Ap-
pendix, Fig. S11 A and B shows the number of themes that we found
in the ECOD dataset that span more than a single fold (X-level
classification) as a function of the minimal theme length: among the
862 themes that are found in more than five domains each, 84 span
at least two ECOD X classifications. The themes found are in many
different folds: SI Appendix, Fig. S11C shows that the total number
of folds spanned by any theme is significant. However, as the
themes are characterized not only by similar structures (like folds)
but also, by similar sequence (and especially since we are using strict
thresholds), most themes span only a small part (less than 10%) of
their folds (SI Appendix, Fig. S11D). These measures depend on the
sequence similarity threshold: SI Appendix, Fig. S11 E–H shows
that, using the laxer threshold of 40%, we find more themes in
general and more themes that span multiple folds or a greater
portion of their folds. Notice that domains from the same X-level
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Fig. 4. Reuse in protein space is greater when con-
sidering sets of themes of increasingly shorter mini-
mal lengths. Reuse in the ECOD (A and B) and PDB (C
and D) datasets. (A and C) The number of recurring
residues (i.e., amino acids that appear in any theme)
(Eq. 1) using different sets of themes. (B and D) The
number of unique residues (Eq. 2) obtained using
sets of themes with different minimal lengths.
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classification in ECOD often share only similar geometry and might
not necessarily share a common ancestor. In contrast, variations of
the same theme observed here share very high sequence similarity
and are likely to have emerged from a common ancestor.

Discussion
Reuse patterns in protein space reflect 3.7 billion y of evolution (58),
restrained by the underlying physicochemical qualities of covalently
linked amino acids. When analyzing segment reuse in present day
proteins, it is difficult to differentiate between evolutionary traces and
effects of physicochemical constraints resulting from, for example,
limitations on backbone conformations, the tendency to satisfy back-
bone hydrogen bonds, or amino acids qualities. As a rule of thumb,
instances of structural reuse—or segments of similar shape—are likely
attributable to physicochemical constraints and convergent evolution,
whereas sequence reuse may be more indicative of divergence from a
common ancestor. Overall, it is unclear how one can definitively sep-
arate between divergent and convergent evolution when relying on
present day data. Our premise is that relatively long protein segments
(≥35 residues) with similar sequences that recur in evolutionarily un-
related contexts provide support to the idea of divergent evolution,
because it is unlikely that two such low-probability events happened
independently of each other. Thus, our starting point is a set of se-
quence alignments (we enforce structural similarity only as a precaution
against including segments that are too divergent). To study evolution,
we investigate reuse patterns of protein segments with similar se-
quences and of diverse lengths, referred to as themes, on a large scale.
To automatically identify sequence reuse from a set of all-vs.-all

alignments, we rely on a computational framework introduced here.
Given a set of all alignments of a protein (or domain), we can use
this framework to derive an optimal set of nonoverlapping themes
corresponding to that protein. Then, we repeatedly follow alignment
relationships to identify additional variations of each theme. This
way, we collect sets of themes that include many variations. Rather
strict similarity thresholds were used here, but one can use our tools
for similar analyses with even lower probability events (enforcing
longer segments and higher sequence similarity thresholds).
Herein, we identified sets of themes from the ECOD and PDB

databases and used them to quantify overall reuse in protein
space. We showed that, when considering increasingly shorter
themes, reuse is more prevalent. Using conservative thresholds
for theme length, we identified themes that appear in multiple
domains/chains in the connected regions of protein space. For
the ECOD dataset, we detected themes in 19–50% of the do-
mains when considering minimal theme lengths ranging from
61 to 35; for the PDB dataset, we detected themes in 20–78% of
the chains when considering minimal theme lengths ranging from
200 to 35. This reuse is significant, because it is observed after
removing redundancy (up to 70% sequence identity).
The themes are not reused uniformly. Rather, a few are heavily

reused, whereas many recur only sparsely. This pattern is observed
across all theme lengths and in both datasets. Our analysis of the
ECOD dataset suggests a similar pattern for second-level cluster-
ing (based on structural similarity) as well. This observation is in
agreement with previous studies investigating both shorter (15) and
longer segments (21–27). Our study completes the picture of seg-
ment reuse for the missing lengths in the midrange, showing that,
indeed, this usage pattern is a ubiquitous feature of the protein
universe (25). Consequently, any conclusions emanating from it
about the underlying evolutionary process hold for segments of all
lengths. The fact that reuse increases when shorter themes are
considered is consistent with models of evolution by duplication
and divergence. The recurrent themes (of diverse lengths) might
have served as recursively used “evolutionary building blocks.”
By using the same automated methodology systematically, we

can compare results obtained for themes of different minimal
lengths. We see that a given protein chain may include both
shorter themes that are reused more extensively in protein space
and longer ones that are reused more sparsely. This is illustrated
in the propeller domain, where short themes that are shared by
many domains overlap with longer themes shared by only some of

these domains (Fig. 3). This pattern of reuse may be indicative of
shared evolutionary ancestry ranging from further back to more
recent. In this context, it is interesting to notice that, of 26 domains
that share the four-blade theme, 6 are from eight-blade propellers
and 20 from seven-blade propellers, suggesting an evolutionary
link between these two classes of domains. Evolutionary analysis
(59) and directed evolution studies (60) support this scenario for
the emergence of the propeller domain by amplification from
single blades followed by function differentiation. Our analysis
shows that such recursive patterns are common in protein space
(SI Appendix, Fig. S4 A and B) for themes both longer and shorter
than the typical domain, suggesting that many proteins emerged
through similar processes (data are available in SI Appendix).
In contrast to the richness and inherent complexity of the themes

described above, where a given amino acid can belong to multiple
themes, the entities classified in domain databases, such as SCOP,
CATH, and ECOD, aim to provide a much reduced representation
of reuse in protein space. That is, domains are reused segments of a
particular size—100 residues on average (35). To identify domains
for inclusion, the curators of these databases generally relied on the
sequence reuse signal (35, 61–63). In particular, this view places
every residue in exactly one reused segment (its domain). [Note that
here we are referring to the entities classified; indeed, as these are
hierarchical classifications, each domain is then classified into several
groups (e.g., family, superfamily, fold, class).] This decision regarding
database construction has had far-reaching effects. Algorithms that
mine the reuse signal depend on the segmented chains in these
databases both when aligning a new target chain to a given database
and when tuning their parameters (64). Consequently, such algo-
rithms identify domains with lengths similar to those already in the
databases (40). This, in turn, influences a host of applications that
rely on these data, such as function annotation, which often starts
with segmenting the protein chain into domains (65).
Tracing the reuse of themes of minimal lengths ranging from 35 to

200 residues—below and above the length of an average domain—
provided us with means for examining whether domains are indeed
the basic “building blocks” of evolution. Specifically, we attempted to
differentiate between two alternative scenarios: (i) duplication of
protein segments occurs (only) at the domain and above-domain
levels vs. (ii) duplication occurs among protein segments of diverse
lengths and in particular, also among segments that are shorter than
domains. In both cases, we expected to observe reuse. The difference
is that the first scenario implies that the level of reuse observed with a
minimal length threshold of ∼100 residues should be similar to that
observed when shorter themes are considered, whereas the second
scenario implies that reuse should be more extensive when shorter
themes are included. Our results unequivocally support the second
scenario. The shorter the segments included, the more reuse we find,
and this relationship is monotonic. In other words, contrary to
Brenner’s statement that protein evolution acts in units of 100 resi-
dues (39), the length of 100 residues is not singular from the per-
spective of reuse. We, therefore, suggest that, when studying protein
function and evolution, it is not sufficient to only consider reuse
among substructures of ∼100 residues (66). Rather, researchers must
take into account the more complex patterns associated with the
reuse of (often overlapping) segments of many different lengths.

Conclusions
Our work suggests two future directions. The first is document-
ing sequence reuse of segments across a wider range of lengths.
We hope that this approach will be incorporated into future
versions of existing databases. A holistic and unified view can
include reuse of protein themes, motifs, domains, supradomains,
chains, and even complexes and represent instances in which
residues appear in several (overlapping, occasionally nested)
reused segments of different lengths and in (increasingly large)
sets of neighboring proteins. The second is identifying sequences
of short reused protein segments that fold independently, which
can offer powerful hints as to how proteins evolve. Our themes,
available at http://trachel-srv.cs.haifa.ac.il/rachel/ppi/themes/, can
assist in narrowing the search for such segments. Indeed, our set of
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themes could be remnants of antecedent peptides from which cur-
rent proteins emerged. At any rate, the principles presented here
and the computational pipeline could facilitate the detection of such
peptides. Relating themes to biological functions, such as binding of
ligands, nucleic acids, and proteins, may also facilitate this effort,
offering a perspective on the evolution of protein function.

Methods
For every protein P, we consider all of its meaningful HHSearch (12) alignments.
Based on these alignments, we identify contiguous segments in P (i.e., themes)

that have at least minimal theme length residues and that are most reused.
To do this, we define a ScoreðÞ function that quantifies the support that the
alignments offer to the idea that a theme is reused and solve the optimi-
zation problem of finding the set of themes that are most reused using a
dynamic programming algorithm. After a list of all of the candidate themes
was found, we used a search-and-join step to join similar themes that were
identified in different contexts. This results in a set of bona fide themes:
each is a set of segments from different proteins, among which we iden-
tified similarity relationships (SI Appendix has details of the algorithms
and examples).
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