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ABSTRACT

The discrimination between functionally neutral
amino acid substitutions and non-neutral mutations,
affecting protein function, is very important for our
understanding of diseases. The rapidly growing
amounts of experimental data enable the develop-
ment of computational tools to facilitate the annota-
tion of these substitutions. Here, we describe a
Random Forests-based classifier, named Mutation
Detector (MuD) that utilizes structural and
sequence-derived features to assess the impact of
a given substitution on the protein function. In its
automatic mode, MuD is comparable to alternative
tools in performance. However, the uniqueness of
MuD is that user-reported protein-specific structural
and functional information can be added at run-time,
thereby enhancing the prediction accuracy further.
The MuD server, available at http://mud.tau.ac.il,
assigns a reliability score to every prediction, thus
offering a useful tool for the prioritization of substi-
tutions in proteins with an available 3D structure.

INTRODUCTION

The human population contains approximately 10 million
single nucleotide polymorphism (SNP) sites (1). The

non-synonymous SNPs (nsSNPs) account for a large
portion of the known genetic variations associated with
human diseases (2). Many experimental mutagenesis
studies have been dedicated to the identification of
disease-causing amino acid (AA) substitutions among
SNP sites. However, experimental mutagenesis is time-,
labor- and cost-demanding. Thus, numerous computa-
tional tools have been developed to predict effects of AA
substitutions on protein function.
The reported methods have significantly different input

requirements. (i) One set of tools focuses only on
sequence-based features (3–7). For example, Ng and
Henikoff (5) developed a homology-based algorithm
(SIFT; sorting intolerant from tolerant) to estimate the
viability of substitutions according to the profiles of AA
residues in alignment columns. (ii) A number of
approaches extend beyond the use of alignments to
sequence-based prediction of structural features (3,5,7).
For instance, Bromberg and Rost (3) trained neural
networks using, among other features, predicted second-
ary structure and residue solvent accessibility. (iii) To
reflect the differences between the wild type AA and the
mutant, several methods utilize physicochemical features
(3,6,7), illustrating the differences in the hydropathy, sec-
ondary structure propensities, etc. (iv) With the growing
number of solved structures, several tools choose to util-
ize observed structural data such as solvent accessibility
(8–11), distance to the ligand (9–11), statistical
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knowledge-based potentials (9) and micro-environment
description (8). (v) A number of studies show that predic-
tion can be improved by combining information from
various sources (3,7,11). For example, PolyPhen (11)
employs a rule-based system that incorporates informa-
tion from the UniProtKB/Swiss-Prot annotations (12)
together with data extracted from solved 3D-structure
and sequence alignment.
AA substitution prediction algorithms are usually con-

tingent on a data set of substitution variants that have
been experimentally annotated as neutral or non-neutral.
The available data sets can be broadly divided into four
categories. (i) Relatively clean substitution data collected
from extensive mutagenesis studies (13–15). These studies
probe nearly all substitutions over whole proteins to
reflect the whole spectrum of effects. (ii) Comprehensive
collections of naturally occurring substitutions annotated
through association studies and targeted laboratory mu-
tagenesis experiments (UniProtKB/Swiss-Prot (12),
HGMD (2), etc). Unfortunately, this data might be
biased by investigator interest and some of the annotated
neutrals are likely non-neutral mutations whose disease
associations were overlooked. Moreover, the number of
false non-neutral annotations obtained from association
studies is also relatively high (16). (iii) The Protein
Mutant Database (PMD) (17), representative of the
third type of data, avoids the problem of false
non-neutrals by reporting substitutions that have been ex-
perimentally validated. (iv) The fourth category includes
evolutionary model (EM)-based substitution data sets that
are a relatively reliable set of neutral mutations created by
analyzing single residue substitutions between
orthologous proteins (3,7).
Herein, we present a web-based tool, named MuD,

aimed at distinguishing functionally neutral and
non-neutral AA substitutions. MuD utilizes a machine
learning algorithm and a set of structural- and
sequence-based features. A benchmark experiment using
a cross-validation on a subset of the Bromberg and Rost
(3) data set (Sub-BR data set) showed similar performance
as SNAP (screening for non-acceptable polymorphisms).
However, the performance on a test set of three proteins
(3-PRO), which have previously been used for benchmark-
ing, confirmed the importance of using reliable experimen-
tally verified structural data (e.g. naturally occurring
ligands pertinent to the function of the protein and the
biological oligomerization state of the protein). Given
this improvement in performance, we enabled the MuD
server to allow users to guide the prediction scheme using
select structural features. The web server is free and open
to all users and there is no login requirement.

METHODS

We employed a Random Forests machine-learning
algorithm to differentiate between non-neutral and
neutral substitutions. The model was trained and tested
on the Sub-BR data set (described below) using cross-
validation. In addition, we evaluated the performance on

the 3-PRO data set after training on the complete Sub-BR
data set.

Data sets

MuD’s model was trained on substitutions extracted from
the Bromberg and Rost (3) data set. Since MuD requires
both sequence and structural data, we excluded proteins
for which the structure was not available. We also
excluded proteins with fewer than five homologs, and sub-
stitutions in positions with low information content, as
measured by the ConSurf (18) confidence interval. This
filtration procedure resulted in a set of 19 615 substitutions
(70% non-neutral). A balanced data set contributes to the
prediction accuracy (19). Thus, we randomly removed ap-
proximately a third of the non-neutral substitutions,
yielding a balanced set (Sub-BR) comprising 12 133 sub-
stitutions from 1178 proteins. Of this subset, 10 253 sub-
stitutions originated from PMD and 2065 were EM
substitutions. The classification of the Sub-BR proteins
according to the Structural Classification of Proteins
(SCOP) database (20) can be found on the web server.

We extended our examination to the 3-PRO data set,
comprised of the Escherichia coli lac I repressor (15), HIV
protease (13) and T4 lysozyme (14,21) mutagenesis data.
After applying the filtration procedure (as explained pre-
viously), we retained subsets with 1773/2230, 148/157 and
315/1475 non-neutral to neutral mutants ratios, respect-
ively; constituting 99%, 90% and 89% of the original data
sets, respectively. The original mutagenesis experiments
classified each substitution into four categories: no pheno-
typic effect and three levels of severity of phenotypic
change. We followed the reduced binary classification of
Ref. (9), where the substitutions with no effect were
deemed neutral and the rest were non-neutral.

Machine learning

Random Forests is a classifier consisting of an ensemble of
tree-structured classifiers (22). We used the R software
implementation of Random Forests (23). The number of
trees to grow was set to 650 and the number of random
features to be searched at each tree node was the
square-root of the number of features.

Data gathering

Both the sequences and the PDB file names required for
all data sets were extracted from the corresponding
UniProtKB/Swiss-Prot entries (12). The multiple
sequence alignments (MSAs) and the PDB (24) files were
downloaded from the ConSurf-DB database (25) and
from the protein quaternary structure (PQS) server (26),
respectively. We excluded proteins sharing <30%
sequence identity with the query protein to ensure that
the sequences in the MSA would all belong to the same
protein fold (27).

Feature set

We used a total of 14 features (with 41 dimensions). The
novel features are presented here, whereas traditional de-
scriptors such as secondary structure assignment,
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UniProtKB/Swiss-Prot annotations, physicochemical and
AA preference (using SIFT), number of sequences in the
alignment, stability prediction change and evolutionary
conservation are included in the Supplementary Data.

Structure-based features.

Solvent accessibility and oligomerization interface. The
solvent accessibility was calculated according to the struc-
ture (among all the protein’s structures) in which the query
position had the least area of side chain solvent accessibil-
ity. This structure was used to calculate two solvent acces-
sibility features: Cb density (10) and side chain accessible
surface area (using NACCESS (28)). To measure the in-
volvement of the query position in the oligomerization
interfaces, we performed a search over all available struc-
tures for the maximal difference between the heavy atom
density of the query position in its single chain and
complex forms.

Ligand distance and binding site conservation. To identify
residues involved in ligand binding or catalytic activity, we
measured the shortest distance between the heavy atoms
of the query position and of the ligands in all available
structures. A ligand was defined as a hetero atom
compound, dinucleotide chain or a protein chain shorter
than 15 AAs. Since crystal structures often include ingre-
dients of the crystallization solution, which are not natur-
ally present, we strove to rank the ligands according to
their biological relevance. We assumed that the evolution-
ary conservation of the binding site indicates whether the
ligand bound to the site is indeed naturally present.
Therefore, we ranked the ligands according to the
ConSurf conservation score assigned to the most
conserved AA with a distance of 4 Å from the ligand.
This value was selected empirically (Supplementary Data).

Fold three-dimensional residue environment. Fold three-
dimensional residue environment (F3DRE) was calculated
following Ref. (8), but taking into account the residue
environment of homologs (inferred from the MSA).
Given a query position, we retrieved from the protein
structure all the AA positions � whose Ca atoms were
within a distance of 9 Å from the Ca of the query
position. Next, according to the alignment of the AA
sequence of the query protein in the MSA we defined
MSA columns T that correspond to �. For every
column t|t 2 T, we calculated the AA composition
vector Caa,t|1� aa� 20, t 2 T (Supplementary Equation
S1), while disregarding gaps in the column. Next, we
calculated the F3DRE for every AA as the average AA
composition over all T (Supplementary Equation S2).

Sequence-based features.

Sequence identity to the closest homolog bearing the
substitution (SIDCH). Counterintuitively, in some of the
non-neutral mutations, the mutant AA appeared naturally
in the aligned positions in homologous proteins, and we
hypothesized that they are likely to occur mostly in distant
homologs. Therefore, we added a feature that specifies the
sequence identity of the query protein to the closest
homolog bearing the mutant AA. For example, the

mutation I104S in the human protein transthyretin
(UniProtKB/Swiss-Prot ID: TTHY_HUMAN) is known
to cause amyloidosis Type 1 (29). Two homologous
proteins (A7UIU9_PERFV and Q9PTT3_SPAAU) with
sequence identities of 58% and 53% to TTHY_HUMAN
feature the AA serine in the corresponding position, and
the value of I104S SIDCH was set to 58%.

SNAP. The prediction scheme presented here is based on
a solved crystal structure of the query protein, reducing
the size of the learning data set considerably. Thus, we
also used SNAP, a prediction scheme based on sequence
alone. The predictions utilized during the performance as-
sessment were obtained from the testing procedures
described in Ref. (3).

Performance measurements

The performance of MuD on the Sub-BR data set was
examined using a leave-one-out cross-validation test. To
empirically estimate how well the method can be
generalized to unseen substitutions it is important that
the training and testing sets are as dissimilar as possible.
Therefore, during each iteration of the leave-one-out
cross-validation, all substitutions from a single protein
were designated for testing, whereas the substitutions be-
longing to proteins with HSSP distances �0 (27) to the test
protein were designated for training. For alignments of
>250 residues this HSSP-distance threshold infers that
no pair of proteins had over 21% pairwise sequence
identity.
To calculate the average and SD for the performance

measures, we used a bootstrap procedure with 1000 iter-
ations. At each iteration we randomly selected 60% of the
data set while maintaining a balanced ratio of non-neutral
to neutral substitutions. The performance measures on
each subset were calculated according to predictions
obtained during the cross-validation.
To compare PolyPhen’s performance, we defined the

‘benign’ and ‘possibly damaging’ predictions as neutral
and the prediction ‘probably damaging’ as non-neutral.
This binary classification gave the highest Matthew’s cor-
relation coefficient (MCC) value for the PolyPhen predic-
tions on the Sub-BR data set (MCC of 0.39±0.01). The
alternative definition, setting ‘benign’ predictions as
neutral and ‘possibly damaging’ predictions and
‘probably damaging’ as non-neutral gave a lower MCC
of 0.35±0.01.
To further measure MuD’s performance, we trained on

the Sub-BR data set and tested on the 3-PRO data set in
fully- and semi-automatic schemes. As in the cross valid-
ation procedure, only proteins with an HSSP-value �0 to
any of the 3-PRO proteins were retained in the training
set. In the semi-automatic scheme, all ligands not present
naturally were disregarded and the oligomerization state
of the protein was determined according to the literature.
Specifically, (i) the T4 lysozyme was predicted as a dimer
by the PQS. However, according to the literature its bio-
logical unit is a monomer (30). As the T4 lysozyme has
been used as a scaffold for the creation of an artificial
binding site, most of its solved structures include
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biologically non-relevant ligands (30). Hence, we disre-
garded all ligands found in the T4 lysozyme structures.
(ii) Most of the HIV protease structures have an inhibitor
located at the active site. All other ligands and additional
chains were removed. (iii) At the semi-automatic predic-
tion of the lac I repressor substitutions, we considered
only the DNA segments and ligands that were located at
the known repressor binding site.

Performance measures

We used several standard measures [Equations (1–5), and
Supplementary Table S1 and Equation S5]

Matthew0s correlation coefficient

¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTNþ FNÞðTNþ FPÞðTNþ FNÞðTPþ FPÞ

p
ð1Þ

True positive rate ¼
TP

TP+FN
ð2Þ

Precision ¼
TP

TP+FP
ð3Þ

False positive rate ¼
FP

FP+TN
ð4Þ

Specificity ¼
TN

TN+FP
ð5Þ

to evaluate the performance of MuD and to compare it
with other prediction tools. To assess the overall perform-
ance, we utilized both the receiver operating characteristic
(ROC) area under curve (AUC) and the MCC. The ROC
curve analysis does not require the determination of a
decision threshold and as such can better describe the per-
formance of the prediction. However, although the SIFT
predictions are numeric they have been optimized for a
default cutoff. Furthermore, PolyPhen predictions are
not numeric. Therefore, the comparison of performance
of SIFT and PolyPhen to MuD was only possible using
MCC.

RESULTS

Cross-validation performance

According to the MCC and ROC AUC, MuD and SNAP
exhibit similar performance and are both better than SIFT
and PolyPhen (Table 1, and Supplementary Table S2 and
Figure S1) on the Sub-BR data set.
The Sub-BR data set consists of two subsets: substitu-

tions extracted from the PMD database and neutral EM
substitutions. We reviewed the performance of MuD on
each of these subsets separately. MuD did better than
SIFT, PolyPhen and SNAP on the Sub-PMD data set.
However, the performance of all four methods on this
set was lower than on the entire data set. MuD had a
high FP rate of 41.1±0.6% on the substitutions extracted
from the PMD compared to only 2.0±0.2% on the EM
subset. The implications of this are discussed in the
Supplementary Data.

Prediction performance may also depend on the
protein’s structural class. To examine this possibility, we
analyzed the cross-validation results of SNAP and MuD
and the predictions made by SIFT and PolyPhen on the
Sub-BR data set according to the SCOP class assignment
of the query proteins (Supplementary Figure S2). Ninty
seven percent of the Sub-BR data set mutations occur at
proteins assigned by SCOP to one of the seven ‘true’
SCOP classes. Across all SCOP classes MuD performed
as good as any of the other methods or better. The per-
formance of MuD, SNAP and SIFT on the ‘membrane
and cell surface proteins and peptides’ and ‘small proteins’
classes showed a decline in the performance relative to the
four main SCOP classes (all a, all b, a / b, a+b). These
classes comprise a small number of substitutions (437 and
391, respectively), but the decline may be indicative of a
true difficulty.

Performance on the 3-PRO data set. We also evaluated
performance on additional data sets that have previously
been used for benchmarking. Our results of the fully auto-
mated and of the semi-automatic schemes were compared
with SIFT, PolyPhen and SNAP (Table 2). A comparison
between all the fully automated methods indicated that
neither was favorable over the others. SNAP performed
best on the T4 lysozyme, SIFT performed best on the HIV
protease and MuD performed best on the lac I repressor
data set. However, semi-automatic MuD surpassed all
other methods in all performance measures.

The web server

The MuD web server implementation encourages the user
to introduce into the prediction scheme specific biological
data about the target protein. The graphical user interface
and an example of the results page are depicted in
Supplementary Figure S6.

DISCUSSION

We tested MuD using cross-validation analysis on the
Sub-BR data set and found automatic MuD to be as
good as SNAP, and better than PolyPhen and SIFT.
However, the assessment also indicates that MuD might
be less suitable for the prediction of substitutions in
non-globular and small proteins.

The incorporation of structural features such as solvent
accessibility, ligand proximity and oligomerization inter-
faces into the automatic MuD might not always be advan-
tageous. This is due to (i) the presence of non-naturally
present ligands, such as ingredients of the crystallization
solution and (ii) incorrect oligomerization state assign-
ments that may hinder the prediction accuracy. To allevi-
ate these problems, the MuD web server implementation
offers a semi-automatic scheme. It enables the user to in-
corporate additional data about the target protein in order
to improve the prediction accuracy. This procedure aims
reducing the erroneous features that might be extracted
from the crystal structure. Specifically, the graphical inter-
face of the server allows the user to filter out irrelevant
ligands and to select the structure of the biological unit.
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Additionally, the user can change the indication of func-
tionally important residues.

Detailed analysis of three well-characterized proteins
showed that the incorporation of target-specific data on
each protein via the semi-automatic scheme improved the
prediction performance, surpassing current methods. The
largest difference in the performance between the
semi-automatic and automatic MuD is manifested in the
T4 lysozyme data set. This is not surprising since many of
the PDB T4 lysozyme structures contain non-relevant
ligands and do not present the protein in its correct bio-
logical shape.

An important aspect of MuD is the ascription of a re-
liability score to every prediction (Supplementary Data).
The reliability score offers the researcher a qualitative as-
sessment of the prediction, indicating its expected
accuracy, sensitivity and precision. The reliability score
can be used to prioritize substitutions in a given set ac-
cording to their likelihood of affecting the protein
function.

We are hopeful that this tool will assist researchers in
the annotation of disease causing substitutions in proteins
with a solved crystal structure.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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