TABLE 2.8 Cellular and physiological roles of key cationic metals in living organisms ([512,513] and references therein). Examples of proteins (in italics), processes, or structural motifs associated with some of the roles are in parentheses. Abbreviations: CCO – cytochrome c oxidase; CP450 – cytochrome P450; GS – glutamine synthetase; GT – glycosyltransferase; ND – NADH dehydrogenase; PC – plastocyanin; PEPCK – phosphoenolpyruvate carboxykinase; PK – pyruvate kinase; SD – succinate dehydrogenase; SOD – superoxide dismutase. | Metal | Cellular and Physiological Roles | Nutritional
Deficiency | |-----------------------------|--|--| | Fe ^{2+/3+} (iron) | Enzymatic catalysis (electron transport, substrate or cofactor binding and stabilization) Energy metabolism (ND, SD) and production (electron transport chain) DNA synthesis (ribonucleotide reductase) Photosynthesis (electron transport chain) Oxygen transport (hemoglobin, myoglobin) Nitrogen fixation Anti-oxidation (catalase, peroxidases) Detoxification of drugs and toxins (CP450) Brain development in infants Nitrogen fixation by certain bacteria (nitrogenase) | Anemia | | Cu ^{+/2+} (copper) | Enzymatic catalysis (electron transport, substrate or cofactor binding and stabilization) Energy production (<i>CCO</i> in electron transport chain) Synthesis of connective tissue proteins, red blood cells, melanin, certain hormones and neurotransmitters Iron metabolism (<i>ceruloplasmin</i>) Bone mineralization Anti-oxidation (<i>SOD</i>) Oxygen transport in invertebrates (<i>hemocyanin</i>) Photosynthesis in plants (<i>PC</i> in electron transport chain) | Hematological and neurological disorders (very rare) | | Metal | Cellular and Physiological Roles | Nutritional
Deficiency | |------------------------------|---|---| | Mg ²⁺ (magnesium) | Enzymatic catalysis (substrate or cofactor binding, stabilization and activation) DNA replication, repair, and stabilization Energy production and biosynthesis Nerve and muscle function Formation of bones and teeth Photosynthesis in plants (<i>chlorophyll</i>) | Neuromuscular,
cardiovascular and
metabolic dysfunction
(rare) | | Zn ²⁺ (zinc) | Enzymatic catalysis (substrate or cofactor binding, stabilization and activation in over 300 enzymes [514]) DNA replication and transcription (zinc fingers in <i>DNA/RNA polymerases</i> and <i>transcription factors</i>) Stabilization of cell membranes Development of skeletal and reproductive systems Wound healing (<i>matrix enzymes and proteins</i>) Immune response Brain function and learning Blood pH buffering and CO₂ transport (<i>carbonic anhydrase</i>) Cellular signaling and neurotransmission Programmed cell death | Multiple, from hair loss, impotence and diarrhea to impaired growth and development, and susceptibility to infections | | Ca ²⁺ (calcium) | Enzymatic catalysis (substrate or cofactor activation) Cellular signaling (e.g., calmodulin) Muscle contraction Neurotransmission Blood clotting (coagulation factors) Structural element in bones and teeth | RicketsClotting problemsOsteoporosis | | Mn ²⁺ (manganese) | Enzymatic catalysis (substrate or cofactor binding and stabilization) Energy production and biosynthesis (<i>PK</i>, <i>PEPCK</i>, <i>GS</i>) Nitrogen metabolism (<i>arginase</i> in urea cycle) Anti-oxidation (<i>SOD</i>) Wound healing (<i>prolidase</i> in collagen formation) Bone development (<i>GT</i> in proteoglycan synthesis) Photosynthesis in plants (water splitting center) | Bone demineralization Impaired growth | | Co ²⁺ (cobalt) | Enzymatic catalysis (substrate or cofactor binding and stabilization) Vitamin B₁₂-dependent processes, e.g., DNA synthesis and amino acid metabolism | _ | | Metal | Cellular and Physiological Roles | Nutritional
Deficiency | |-------------------------------------|---|---| | Mo ^{3+/4+/6+} (molybdenum) | Enzymatic catalysis (electron transport, substrate binding, stabilization and activation) Purine nucleotides breakdown (<i>xanthine oxidase</i>) Amino acid metabolism (<i>sulfite oxidase</i>) Metabolism and clearance of drugs and toxins (<i>aldehyde oxidase</i>) Nitrogen fixation by certain bacteria (<i>nitrogenase</i>) | | | Cr ³⁺ (chromium) | Glucose transport into cells (by potentiation of insulin action) | Impaired glucose tolerance Increased insulin requirement Diabetes |