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1. Introduction

A global view of the protein universe is an abstraction
that allows one to formulate, quantify, and hold up to
scrutiny general observations regarding protein evolu-
tion.[1–7] A major difficulty in forming a global picture of
the protein universe is that it must be pieced together
from many local observations that experimental tech-
niques and computational tools can provide. In other
words, a global picture needs to portray relationships
among all proteins, yet we only have evidence of such re-
lationships among several proteins. The considerable size
of the protein databases also complicates this task. Thus,
building a meaningful and coherent global picture of pro-
tein space remains a significant challenge on the path to
understanding protein evolution and the biophysical prin-
ciples that underlie it.

Focusing on different local similarities among proteins
results in different global perspectives of protein space. In
particular, the local relationships can be derived, based
on the proteins� amino acid sequence, three-dimensional
structure, function (i.e. , phenotype), or linkage to diseas-
es.[2] The sequence databases hold the largest number of
proteins: TrEMBL currently holds almost 50 million se-
quences and SWISS-PROT holds approximately 500,000
sequences.[8] The Protein Data Bank (PDB), in which
structures are stored, holds over 100,000 structures.[9]

The similarities among pairs of proteins are typically
based on the similarity of their parts, i.e. , of two subsec-
tions that have similar sequence and/or structure. Scien-
tists consider such similarities significant because we
assume that insertions and deletions are common evolu-

tionary events. However, one must be aware of the pit-
falls when relying on such similarities to form a global
picture. Most importantly, such similarities are not transi-
tive.[10–12] That is, it may be that there is significant simi-
larity (or evidence of evolutionary relationship) between
proteins A and B, and between proteins B and C, yet
there is no detectable similarity between proteins A and
C. This can happen, for example, if the similarity lies in
non-overlapping subsections of protein B (See Figure 3 in
Ref. [2]). Cases of missing transitivity are widespread
when considering protein chains, as these are composed
of structural domains that are reused by nature.[13] Focus-
ing on structural domains as the basic units can alleviate
the problem, but does not solve it altogether, as there are
many cases of missing transitivity, even when comparing
domains.[14] In addition, it is not trivial to predict domain
boundaries based on a protein’s sequence, raising techni-
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cal problems for broad applications of domain-based clas-
sifications to proteins of unknown structure;[15] even when
the structure is known, identifying domains, and in partic-
ular, the exact boundaries, is challenging.[16]

Three alternative representations of protein space are
classifications, maps, and networks. Classifications organ-
ize objects into categories, often hierarchically. This is, by
far, the predominant way to study the global nature of
protein space, and it rests on a long tradition of studies
that classified objects in biological archives, dating back
to Darwin and earlier. Maps visualize the abstract protein
space as a collection of points in low-dimensional Eucli-
dean space (namely, in two or three dimensions). In
maps, the distance between the points approximates the
distance between the objects they represent, and color
encodes the objects� properties. Networks represent pro-
tein space as a set of nodes connected by edges. Scholars
study the properties of these networks, including visualiz-
ing the networks in two dimensions, to better understand
the global nature of protein space. To construct a classifi-
cation, a map, or a network, one must decide on the unit
objects (i.e., the object to classify, to represent by points
or by nodes), and on what relates two (or more) objects.
Indeed, different decisions reveal different global per-
spectives of protein space.

The objects described by the classifications, maps, and
networks can be short protein segments, protein motifs,
structural domains, full chains, or multi-chain complexes.
The relationships between the objects can be based on
the similarities of their sequence, structure, function, or
a combination of these. Alternatively, two objects can be
considered related if they co-occur in nature, or if there is
evidence of an evolutionary relationship between them.
A global description can include all objects which can be
related, yet only those contained in the various databases.
For example, if the relationship depends on sequence sim-
ilarity, then all chains in the sequence databases SWISS-
PROT and TrEMBL can be represented. However, if the
relationship depends on structure similarity, we are re-
stricted to the chains in the PDB. Similarly, if the rela-
tionship depends on functional similarity, we are restrict-
ed even further to the proteins with annotated functions.

2. Classifications

The first and most significant efforts to understand the
global nature of the protein universe were based on clas-
sifications. There are many classifications of protein
space; for reviews, see Refs. [17–20]. Here, we focus on
classifications that aim at providing a global view of the
protein universe. Notice that protein databases that or-
ganize known proteins can also be interpreted as classifi-
cations; these databases are beyond the scope of this
review (e.g., Refs. [21–27]). Classifications cluster all pro-
teins, typically based on comparisons of protein pairs.

Several classifications rely only on the similarity of the
protein sequences. As such, these classifications can de-
scribe all sequences in the large and comprehensive se-
quence databases SWISS-PROT and TrEMBL. Because
these databases are so large, it is necessary to use algo-
rithms that automatically cluster the proteins into mean-
ingful groups. Different classifications use different algo-
rithms. When considering protein sequences, the unit
object is typically a protein chain, partly because it is dif-
ficult to identify domain boundaries. Consequently, the
clustering of sequences has to accommodate (the many)
cases of missing transitivity. Some examples are provided
herein.

CluSTr uses a single-linkage hierarchical clustering, and
relies on pairwise Smith-Waterman comparisons.[28,29] Pro-
tonet is a bottom-up hierarchical clustering that relies on
pairwise BLAST (basic local alignment search tool) com-
parisons;[30–32] Kaplan et al. showed that Protonet clusters
capture functional and structural aspects of the protein
world.[33] TRIBE-MCL is also based on BLAST compari-
sons. TRIBE-MCL uses the stochastic matrix that enco-
des a similarity graph for the set of proteins and analyze
the graph to detect clusters by manipulating this matrix
(using expansion and inflation operators).[34] SYSTERS
(systemic re-searching) groups the sequences hierarchical-
ly at the family and the superfamily level.[35] Another se-
quence-based classification is the clusters of orthologous
groups (COG) database, which is a phylogenetic classifi-
cation of proteins encoded in complete genomes.[36,37] The
COGs are groups of proteins that are tightly related (and
thought to be orthologous), these are clustered into su-
perfamilies using PSI-BLAST. COGs are classified into
17 broad functional categories, and some of the COGs
with known functions are also organized so as to repre-
sent specific cellular systems and biochemical pathways.

There are also classifications that consider the protein
structures. Chothia and Levitt first observed that proteins
structures can be classified into four classes,[1] and Ri-
chardson constructed the first general classification
scheme.[38] Today, the most widely-used classifications are
SCOP (structural classification of proteins)[39] and CATH
(class, architecture, topology, homologous superfamily):[40]

both are hierarchical, and group proteins based initially
on the similarity of their sequences, and then based on
the similarity of their structures. Additional structure-
based classifications are the Dali Domain Dictionary
(DDD),[41] ECOD (evolutionary classification of protein
domains),[42a] the new SCOP2[42b] , and COPS (classifica-
tion of protein structures).[43] Because the structures of
the classified proteins are known, they can be reliably
partitioned to domains. Indeed, SCOP, CATH, and
ECOD classify structural domains, rather than full poly-
peptide chains. These classifications offer different and
complementary views of the protein universe. This is true,
both in terms of the set of classified domains (e.g., SCOP
and CATH domains are not the same), and the clustering
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itself, which is different (e.g., when considering a subset
of domains that are similar between SCOP and
CATH).[44,45]

Finally, there are classifications that consider the pro-
tein functions. Gene ontology (GO) offers a common lan-
guage, formulated as a directed graph, to describe the
biological process of a protein, its molecular function,
and its cellular component.[46] Hence, the set of all GO
annotations for PDB proteins form a functional classifica-
tion. These annotations are of protein chains, but there
are also GO classifications for structural domains, which
were derived from the chain annotations, including refer-
ences.[47,48] Similarly, the EC (Enzyme Commission) num-
bering offers a functional classification of the region in
the protein universe that hosts the enzymes.[49]

3. Maps

A map depicts protein space as a set of points in two- or
three-dimensional space. Each point represents a protein,
and the distance between points approximates the dis-
tance between their corresponding proteins. The coordi-
nates for the N points, which represent N proteins, are
calculated from the N� N proteins’ distance matrix, so
that the distances between the points best preserve the
distances in the matrix. The quality of the embedding in
the low-dimensional map is measured via stress functions,
which compare the distances in Euclidean space to those
in the input matrix; there are different stress functions,
with some being easier to optimize than others.[50] A
common solution to calculating the low-dimensional coor-
dinates is called multidimensional scaling (MDS);[51] it is
optimal in terms of a specific stress function (denoted
strain) and requires calculating the eigenvalue decompo-
sition of the N �N input matrix. Alternatively, one can
heuristically optimize the stress function (e.g., using gra-
dient descent),[10,50,52,53] and thus compute maps even for
large Ns, i.e., for datasets of significant size.

Most maps of protein space represent proteins with
known structure. The maps by Orengo et al. ,[54] Holm and
Sander,[55] and Kim and colleagues[56–58] represent structur-
al distances among protein domains. Rogen and Fain rep-
resented CATH domains by vectors of 30 numbers in-
spired by Vassiliev knot invariants, and projected this rep-
resentation to two dimensions.[59] The maps of Yona and
Levitt represent distances that are based on both the se-
quence and structure similarity,[10] while those of Grishin
and Grishin[60] represent evolutionary distances among
domains. Farnum et al.[52] and Stanberry et al.[61] heuristi-
cally calculated maps that represent the distance between
protein sequences, and in the latter case, the map de-
scribes very large datasets.

Osadchy and Kolodny suggested using the FragBag
representation of protein structures[62] to calculate maps
more efficiently.[53] In FragBag, the structure of a protein

domain is represented as a point in an L-dimensional
space (with L�400); Budowski et al. showed that the
similarity between the FragBag vectors, or the points in
the L-dimensional space, can identify near structural
neighbors as accurately as the state-of-the-art structural
aligners, STRUCTAL and CE (combinatorial exten-
sion).[62] Using FragBag’s fixed-size vector descriptors of
protein domains, Osadchy and Kolodny replaced MDS
with the more efficient computational procedure, princi-
pal component analysis (PCA).[63] PCA generates the
same map (up to a reflection and rotation of the entire
space) as the one generated by MDS, if the distances in
the MDS matrix were the Euclidean distances between
the vectors in the PCA matrix. The difference is in effi-
ciency: PCA calculates the eigenvalue decomposition of
an L� L matrix, where L is the length of the vector de-
scribing a protein (i.e. , L�400), whereas MDS calculates
the eigenvalues decomposition of an N �N matrix, where
N is the size of the dataset. Using this technology, Osad-
chy and Kolodny calculated a map for a larger dataset
with N=31,155 SCOP domains.

Maps provide a comprehensive view of protein space,
which is unconstrained by the implied “boundaries” be-
tween objects that are classified differently (e.g., with
a different SCOP fold, or with a different CATH, classifi-
cation). In maps of protein space, one can visually identi-
fy patterns, formulate these observations to hypotheses,
and test them quantitatively. When formulating such hy-
potheses, one must verify that the low-dimensional pro-
jection of the data did not introduce artifacts (see, for ex-
ample, Ref. [53]). It is also noticeable that the representa-
tion of objects as points in low-dimensional Euclidean
space implicitly assumes that transitivity holds, which is
often not the case (see above). Thus, domains, rather
than full chains, are more appropriate as the objects rep-
resented in maps.

Fundamental insights regarding the nature of protein
space emerged from studying low-dimensional maps. Im-
portantly, the domains from the four major SCOP classes,
namely, from the all-alpha, all-beta, alpha/beta, and
alpha+beta classes, are generally located in different re-
gions of space.[10, 53, 54, 57, 58] Choi and Kim used maps to
study the evolution of protein folds and concluded that
not all present-day proteins evolved from a single set of
proteins in the last common ancestor, and new common
ancestral proteins were “born” at different evolutionary
times.[56] Osadchy and Kolodny showed that the density
of protein structure space is uneven, i.e., certain regions
have more domains per “unit volume” than others. More
significantly, they showed that functional diversity also
varies considerably across structure space; structure space
has a region of high functional diversity, and diversity
abates when moving away from it. The domains in this
high-diversity region are mostly alpha/beta structures,
which are also known to be the most ancient proteins.[56,64]

As expected, the high functional diversity region includes
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domains of the TIM-barrel fold, famous for its functional
diversity, but also many other alpha/beta folds. The evolu-
tionary and biophysical reasons for this remain to be re-
vealed.

4. Networks

Networks represent protein space as a set of nodes con-
nected by edges. The network properties can be studied
directly, e.g., by analyzing the distribution of the number
of neighbors in the network nodes, or the distribution of
the sizes of the connected components in the network.
Alternatively, networks can be visualized,[65,66] alongside
with properties of the proteins, to gain novel insights, e.g.,
by coloring the nodes based on the SCOP class/fold of
the domains they represent. Networks are widely-used to
study proteins: for example, to study protein interactions
(e.g., Refs. [67, 68]), or phylogeny.[64] We focus here on
two specific types of networks: “similarity networks” and
“co-occurrence networks”.

In similarity networks, edges connect nodes that repre-
sent similar objects; in co-occurrence networks, edges
connect nodes that co-occur in nature. The nodes repre-
sent the unit objects, which, in both networks, can be
chains, domains, or motifs. The similarity can be derived
from the sequences, structures, or functions of these unit
objects. These two networks are dual to each other and
thus offer a complementary view of protein space.[69,70] In
dual networks, the roles of nodes and edges are ex-
changed: the nodes of the primary network are represent-
ed by edges in its dual network, and the edges in the pri-
mary network are represented by nodes in its dual. If we
consider, for example, similarity networks, in which the
nodes represent chains (that may include more than
a single domain), then the edges represent their recurring
subparts, namely the domains. Thus, co-occurrence net-
works in which the nodes represent domains are their
dual: these nodes represent the recurring subparts of the
chains, namely the domains, and the edges represent the
chains that include more than a single domain.

4.1 Similarity Networks

Studies investigating similarity networks rely on sequence
or structure similarity. Two significant studies that relate
proteins, based on sequence similarity, are Protomap by
Yona et al. ,[12] and “A Galaxy of Folds” by Alva et al.[71]

In Protomap, nodes are SWISS-PROT proteins, and
edges connect proteins that the local aligners Smith-Wa-
terman, FASTA, and BLAST identified as similar. In “A
Galaxy of Folds”, Alva et al. visualized networks that rep-
resent a set of 20% sequence, non-redundant, SCOP do-
mains: the nodes were the domains, colored by their
SCOP class, fold, or superfamily, and edges connected do-
mains identified as similar by HHSearch, a sensitive se-

quence aligner. Others studied networks that were based
on structure similarity. Skolnick et al. studied a network,
in which edges connect domains that have sufficiently
similar substructures, as quantified using TMScore.[7] Do-
kholyan et al.[72,73] designed the protein domain universe
graph (PDUG), in which the nodes represent a set of
25% sequence, non-redundant, FSSP domains,[74] and
edges connect domains that the structure aligner DALI
identified as similar. They studied the connected compo-
nents in the PDUG, which generally correspond to SCOP
folds. Sun et al.[75] created a PDUG-like network with
a sparser set of domains, so that nodes represent SCOP
folds, rather than families. There are also networks in
which the similarity is identified by both sequence and
structure aligners, including Valavanis et al. ,[76] Camoglu
et al. ,[77] and Yona and Levitt.[10] Finally, Fragnostics by
Friedberg and Godzik[78] is a similarity network, in which
the nodes represent SCOP folds, and edges connect
nodes that represent folds with similar fragment composi-
tion; the FragBag study suggests that this is similar to
connecting folds with similar global structures.[62]

Some of the similarity networks were constructed to
gain insights regarding the evolution and biophysics of
the protein universe, or as an intermediate step when
classifying proteins automatically (e.g., Protomap[12]).
Skolnick et al. deduced from their network that structure
space is highly connected, and that the distance between
any two domains is only a few edges. The PDUG is
a scale-free network and has ’small-world’ characteristics,
unlike random graphs with similar distribution of the
number of edges per node; Dokholyan et al. theorized
that this suggests that all proteins originated from a single
fold, or a few precursor folds – a scenario akin to that of
the origin of the universe from the Big Bang.[72,75,76] In the
PDUG, there is also a correlation between domain struc-
ture and function (as described by functional finger-
prints), which may suggest that divergent evolution is
more dominant than convergent evolution.[73] From the
global view of the sequence-based similarity network,
Alva et al. showed incidences of homologous connections
that transcend both superfamily and fold levels.[71] Fried-
berg et al. demonstrated with the Fragnostics network
that functional similarity (as measured using GO annota-
tions) is correlated with structural similarity.[78]

4.2 Co-occurrence Networks

Studying co-occurrence networks can lead to a better un-
derstanding of processes that create new proteins, i.e., du-
plication, recombination, fusion, and fission of their re-
spective genes.[79,80] Wuchty[81] studied co-occurrence net-
works of the ProDom, Pfam, and Prosite domains, with
edges between domains that co-occur in at least one pro-
tein. He showed that the resulting network does not have
random graph characteristics; rather, it is scale-free. He
noted in this context that the network generation model
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of Barab�si and Albert,[82] which preferentially attaches
newly-added vertices to already well-connected ones, also
generates scale-free networks. Koonin et al. studied co-oc-
currence of the domain sequences in genomes to gain in-
sights into protein evolution.[83] Apic et al. studied the co-
occurrence of SCOP domains in different genomes and
connected two domains if they lie sufficiently close to
each other in a genome.[84,85] In particular, they studied
tandem domains in which the two domains are from the
same SCOP family, as these may have evolved via a mech-
anism of internal duplication; they showed that tandem
domains are a relatively rare event. They also showed
that the co-occurrence networks are scale-free. Finally,
Kummerfeld and Teichman studied a directed version of
the co-occurrence network, in which they took into ac-
count the order of the domains along the protein chain.[86]

5. Conclusions

Understanding the global nature of the protein universe,
and forming abstractions that will represent all protein
data coherently and meaningfully, is a fundamental chal-
lenge. It is interesting theoretically, as it can help to
better characterize protein biophysics and evolution. It
also has practical implications, as it may lead to better de-
signing protein-related tools, e.g., to organize and search
protein databases.[5,87] The rapid growth of the protein da-
tabases renders the challenge of representing protein
space more technically complicated, yet holds the prom-
ise of developing a comprehensive view of the protein
universe.

We surveyed three alternative global representations of
protein space: classifications, maps, and networks. Classi-
fications are the most commonly used representations,
and are the most informative when studying a specific
protein or protein family. However, classifications are less
amenable to visualizing the whole of protein space. Maps
and networks, on the other hand, are easy to visualize,
and thus offer a complementary way to study the protein
universe. Maps are more intuitive, in that the distance be-
tween points is the same as our intuitive notion of dis-
tance; this is also their weakness as it suggests that simi-
larity among proteins is transitive, which is often not the
case. Similarity networks are less intuitive, but do not
suffer from this weakness, as they describe similarity ex-
plicitly. Indeed, studying maps and network representa-
tions has revealed novel properties of the protein uni-
verse.

It is desirable to combine the three representations
under the same umbrella in a way that enables going
back and forth between them. It requires designing inter-
active and up-to-date visualization tools of abstract repre-
sentations of the protein universe for studying protein,
both globally and locally. The desired computational tool
should be based on the available structures for accuracy,

but should also cover proteins for which only the se-
quence is known. It should also include automated means
to detect domains in a reliable way. Studying the global
nature of protein space will hopefully allow us to gain in-
sights, to raise new hypotheses, and to better understand
the relationships between protein sequences, structures,
and functions at the global level. At the same time, such
tools can be adapted to study specific proteins and pro-
tein families, as the local environment in which a protein
lies (i.e., its neighboring proteins), and the location of
a protein within the protein universe, can help in the in-
vestigation of the protein at hand.
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