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ABSTRACT The transmembrane (TM) domains of many integral membrane proteins are composed of a-helix bundles.
Structure determination at high resolution (,4 Å) of TM domains is still exceedingly difficult experimentally. Hence, some TM-
protein structures have only been solved at intermediate (5–10 Å) or low (.10 Å) resolutions using, for example, cryo-electron
microscopy (cryo-EM). These structures reveal the packing arrangement of the TM domain, but cannot be used to determine
the positions of individual amino acids. The observation that typically, the lipid-exposed faces of TM proteins are evolutionarily
more variable and less charged than their core provides a simple rule for orienting their constituent helices. Based on this rule,
we developed score functions and automated methods for orienting TM helices, for which locations and tilt angles have been
determined using, e.g., cryo-EM data. The method was parameterized with the aim of retrieving the native structure of
bacteriorhodopsin among near- and far-from-native templates. It was then tested on proteins that differ from bacteriorhodopsin
in their sequences, architectures, and functions, such as the acetylcholine receptor and rhodopsin. The predicted structures
were within 1.5–3.5 Å from the native state in all cases. We conclude that the computational method can be used in conjunction
with cryo-EM data to obtain approximate model structures of TM domains of proteins for which a sufficiently heterogeneous set
of homologs is available. We also show that in those proteins in which relatively short loops connect neighboring helices, the
scoring functions can discriminate between near- and far-from-native conformations even without the constraints imposed on
helix locations and tilt angles that are derived from cryo-EM.

INTRODUCTION

TMproteins are crucial mediators of cell-to-cell signaling and

transport processes, and constitute some 50% of contempo-

rary drug targets (Fleming, 2000). In recent years the pace of

structural determination of TM proteins has increased, but

technical problems related to protein purification and

crystallization still hamper TM-protein structure determina-

tion. Thus, despite their biomedical importance,,40 distinct

folds of TM proteins have been solved to date by high-

resolution methods such as x-ray crystallography. The lack of

a large set of solved TM proteins also restricts the usefulness

of computational methods based on the statistics of solved

protein structures, and in particular, of comparative or

homology modeling, which has been a very successful ap-

proach in soluble proteins.

In general, computational prediction of soluble-protein

structures is difficult, largely because of the variety of

possible folds, which implies a vast number of degrees of

freedom. In contrast, all TM proteins that inhabit the plasma

membrane of eukaryotic cells form a-helix bundles, thus

reducing the desolvation penalty of exposing polar main-

chain groups. The high propensity to form secondary

structures reduces the number of degrees of freedom, which

determine the protein’s fold, and hence, lowers the com-

plexity of predicting the structures of these proteins.

Structure prediction of TM proteins often relies concep-

tually on the two-stage model for protein assembly in the

membrane (Popot and Engelman, 1990). According to this

model, the first step of folding is the insertion of the TM

domains into the membrane as a-helices. Only in the second

stage do these helices associate to form bundles (reviewed by

White and Wimley, 1999 and Popot and Engelman, 2000).

One of the implications of the two-stage model is that,

overall, the stability of individual TM domains is in-

dependent of that of other domains. Hence, prediction of

TM-protein structures can begin with experimental deter-

mination (or prediction, reviewed by von Heijne, 1996 and

Chen et al., 2002) of the locations of the TM helices in the

amino-acid sequence of the protein.

Some early attempts were made to predict helix

orientations relative to one another by using the concept of

the hydrophobic moment (Eisenberg et al., 1984; Rees et al.,

1989). However, in view of the low-dielectric character of

the membrane, the hydrophobic driving force is probably

less dominant in this medium than in soluble proteins, and

the hydrophobic moment proved to be of limited use in

TM-protein structure prediction (Pilpel et al., 1999; Stevens

and Arkin, 1999).

Attempts were also made to predict the structures of

specific TM proteins or protein families (Tuffery and

Lavery, 1993; Stokes et al., 1994; Taylor et al., 1994;
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Adams et al., 1995; Baldwin et al., 1997; Heymann and

Engel, 2000; Hirokawa et al., 2000; Zhdanov and Kasemo,

2001; Sorgen et al., 2002; Trabanino et al., 2004). For

high-resolution structure prediction of pairs of TM a-

helices, a method that was based on molecular dynamics

was developed, in which data derived from large-scale

mutational assays were utilized to derive constraints for the

conformation search (Adams et al., 1995). Extensions to

this method were suggested, which used phylogenetic

instead of mutational data (Briggs et al., 2001) and

lowered the computational load associated with the

conformation search (Pappu et al., 1999). Recently,

a method based on Monte-Carlo sampling of conforma-

tions, which selects tightly packed conformations, was

shown to reproduce the structures of homooligomers (Kim

et al., 2003). Another method that was founded on

a knowledge-based potential constructed on the basis of

TM proteins of known structures and energy terms that

simulate the membrane environment was also shown to

retrieve the conformations of small homooligomers

(Pellegrini-Calace et al., 2003).

A major limitation of many of the methods in this class is

the large computational load. In fact, computational

complexity has restricted the applicability of these methods

mostly to the cases of homooligomers of single-spanning

TM proteins. A more fundamental handicap is the reliance of

many of these methods on contemporary force fields. Recent

results indicate that the forces specifying and stabilizing

TM-helix interactions are still unclear (Bowie, 2000), casting

doubt on the ability of methods based on existing force fields

to yield accurate predictions.

We recently examined the possibility of reducing the

computational burden by using low resolution from the

outset (Fleishman and Ben-Tal, 2002), i.e., by considering

only the helices’ Ca traces. We developed a scoring

function and a search methodology to seek stable

conformations of pairs of closely packed TM helices. The

use of a reduced representation of the helices allowed us to

conduct an exhaustive search of conformation space, and to

test the method systematically on many different examples.

This approach proved useful in studying the involvement of

the TM domain in the activation of the erbB2 receptor

tyrosine kinase (Fleishman et al., 2002). However, it could

only be applied reliably to helix pairs that are closely

packed (,9 Å separation between the helix axes) (Fleish-

man and Ben-Tal, 2002). Because many of the helices in

TM proteins have greater interhelical separations (Bowie,

1997), in general, this method cannot be used to predict

entire protein domains.

Here, we explored whether such an approach can be

extended to deal with large TM domains by incorporating

the evolutionary-conservation profile of the protein and the

hydrophobicity of its constituent amino-acid residues. The

underlying idea is that amino-acid positions that mediate

interhelical contacts would be more evolutionarily conserved

than those that face the lipid (Donnelly et al., 1993; Stevens

and Arkin, 2001; Beuming and Weinstein, 2004), because

mutation of positions that form contact would most likely

destabilize the protein, and render it dysfunctional (Fig. 1).

Hydrophobicity can be used to discard potential conforma-

tions that expose charged positions (e.g., Arg and Glu) to the

membrane environment (Cronet et al., 1993) due to the

prohibitive cost in desolvation of their highly polar side

chains (Honig and Hubbell, 1984).

To reduce the computational burden associated with

conformational searches of large TM domains, the targets for

our approach are those proteins for which intermediate-

resolution (5–10 Å in-plane) structural data are available,

e.g., from cryo-EM (Unger, 2001). At such resolution, cryo-

EM maps reveal the organization of TM helices relative to

one another including the helices’ positions and tilt angles,

but do not disclose the locations of the individual amino

acids. Based on the cryo-EM data, it is possible to ap-

proximate the helices’ principal axes either manually

(Baldwin et al., 1997; Fleishman et al., 2004) or computa-

tionally (Jiang et al., 2001). Then, the conformational search

FIGURE 1 The conservation profile

of the TM domain of rhodopsin (PDB

code 1l9h). Conservation scores were

computed using the ConSurf server

with the Rate4Site algorithm (Pupko

et al., 2002), and are mapped according

to the color scale with turquoise through

burgundy signifying variable through

conserved positions. (A) Two side

views looking from within the mem-

brane plane. The space-filling models

show that the lipid-facing parts of the

protein are mostly variable. (B) Looking

from the cytoplasmic side. Stick models

of residues that belong to the two

highest categories of the conservation scale (8 and 9) are indicated. The vast majority of these highly conserved residues face the protein interior. The

arrows identify the highly conserved Trp-161, which is exceptional in that it is exposed to the membrane despite its high conservation. This and all other

molecular representations were generated with MOLSCRIPT (Kraulis, 1991) and rendered with Raster3D (Merritt and Bacon, 1997).

TM-Protein Structure Prediction 3449

Biophysical Journal 87(5) 3448–3459



need only explore the orientations of the helices around their

principal axes.

Intermediate-resolution cryo-EM maps of TM proteins

often provide accurate data on the lateral positions of the

helices and their tilt angles within the lipid bilayer, but much

poorer data on the positions of the helices along the vertical

axis (Unger and Schertler, 1995; Unger et al., 1999). In this

study, we limited the methods’ validation to the hydrophobic

portion of each of the TM helices. As these segments are most

likely to align with one another within the hydrophobic core

of the lipid bilayer, the inaccuracy due to the low vertical

resolution of cryo-EM data does not present a significant

problem. In a refinement stage of the conformational search

described below, a limited exploration of all degrees of

freedom, including the vertical axis, was conducted.

Baldwin et al. (1997) used a similar approach to predict the

orientations of helices in rhodopsin based on the receptor’s

cryo-EM map at 9 Å in-plane resolution (Unger et al., 1997).

This prediction was shown (Bourne and Meng, 2000) to

compare very well with the high-resolution structure, which

was solved a few years later (Palczewski et al., 2000).

However, Baldwin et al.’s conservation analysis was highly

labor intensive and required substantial subjective interven-

tion at various stages (Baldwin et al., 1997), making it difficult

to apply to a large set of proteins. As conservation analyses

have grown in rigor and sophistication in recent years, we

have employed automatic and more sensitive tools, to

construct score functions for ranking conformations of TM

proteins. This has allowed us to test various formulations of

the prediction rule and searchmethodology on a variety of TM

proteins. The tests were based on perturbations of the native-

state structures as they are found in the PDB, except in the case

of rhodopsin, in which they were conducted using data

extracted (Baldwin et al., 1997) from its cryo-EMmap at 9-Å

resolution (Unger et al., 1997).

Our analysis leads us to conclude that an approach based

on evolutionary conservation, hydrophobicity, and interme-

diate-resolution structures can retrieve near-native structures

subject to two principal requirements. First, the cryo-EM

map must show that all helices have a face that is buried in

the protein bundle and another that is exposed to the

membrane milieu or the pore lumen. This requirement is

necessary because it is only the heterogeneity of environ-

ments that allows the correct orientation of the helices.

Second, evolutionarily conserved and variable residues must

be distributed in the TM domain in accordance with a helical

pattern (Fig. 1). This distribution ensures that a clearly higher

score is assigned to an orientation, in which conserved

residues face the interior of the helix bundle, whereas the

variable residues are directed toward the lipid. Hence,

a typical case in which this approach is expected to yield

a near-native structure is a protein or an oligomer, where all

helices face the lipid environment or a relatively large

internal pore, and a sufficiently heterogeneous set of se-

quences are available.

Score functions

In developing the conformation-search methodology and the

score functions, we initially used the structure of bacterio-

rhodopsin for parameterization (Luecke et al., 1998). That is,

various formulations of the scoring function were attempted

with the aim of detecting the native structure among con-

tending templates. For instance, formulations that gave a

more dominant effect to hydrophobicity were found to do

more poorly than the formulation that is given below, which

stresses conservation, in agreement with the notion that the

hydrophobic moment is a relatively poor indicator of helix

orientations (Pilpel et al., 1999; Stevens and Arkin, 1999).

The so-called burial function, which we first introduced in

Fleishman and Ben-Tal (2002), is a major component of the

scoring schemes defined here. It is an estimate of the extent

of an amino acid’s contact with another helix. Because the

model describes amino acids merely in terms of Ca positions,

only an approximate measure of contact can be attained. To

achieve this approximation, the function considers the

distance between an amino acid’s Ca position and the other

helix’s principal axis. It also considers the angle formed

between two vectors: one that connects the two helix axes,

and a second that connects the Ca position to its own axis

(Fleishman and Ben-Tal, 2002). If both the angle and the

distance are small, the burial function is assigned relatively

high values (/1). Low values (/0) are assigned otherwise.

This burial function takes into account the details of the

local interactions of the helices. The alternative use of

a moment to account for hydrophobicity or conservation

treats all helices as being perpendicular to the membrane

plane (e.g., Eisenberg et al., 1982; Pilpel et al., 1999), thus

giving a particular helix face the same weight in computing

the optimal conformation throughout the TM span. In con-

trast, the use of the burial function tests the extent of contact

for each amino-acid residue, and treats each position according

to its actual contact with other helices, thus treating tilted

and kinked helicesmore realistically (Fleishman andBen-Tal,

2002).

We used three schemes for ranking template conforma-

tions. The simplest form is the ‘‘singlewise’’ score (Fleish-

man et al., 2004). This function assigns a high score to

conformations that bury conserved faces in the a-helix

bundle, and expose the helices’ variable faces to the lipid.

The function is singlewise in the sense that for any given

amino acid, only the locations of the axes of its neighboring

helices are taken into account. Because these locations can be

derived from the cryo-EM data to a reasonable degree of

confidence, the contributions of each amino-acid residue to

the overall score is independent of the positions of other

residues. The underlying notion in the singlewise score is

that positions that are buried in the protein core are typically

conserved evolutionarily (Fig. 1). Indeed, some conserved

positions may be exposed to themembrane in contradiction to

this ‘‘rule’’ (see the arrows in Fig. 1). However, summation
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across the entire helix span reduces the prediction’s sen-

sitivity to such cases.

Another term penalizes the exposure to the lipid (burial

values ,0.5) of the most polar amino-acid residues that are

associated with high (.7 kcals/mol) desolvation energies

upon transfer from water to membrane according to the

Kessel & Ben-Tal scale (Kessel and Ben-Tal, 2002). The

residues for which the penalty applies are Arg, Asn, Asp,

Glu, and Lys. In essence, this term associates conformations

that expose very polar residues with very unfavorable scores.

Polar residues at the terminal turns (four amino-acid

residues) of helices were disregarded in computing this

penalty, because at these locations, residues may interact

favorably with the relatively polar environment at the lipid-

water interface (von Heijne, 1996). Proline residues are

ignored in calculating the conservation scores because they

are often conserved owing to kinks that they induce in the

helix secondary structure rather than to the formation of

interhelical contacts (Baldwin et al., 1997).

A second scheme, called the ‘‘pairwise’’ function, in-

cluded, in addition to the singlewise score, a term that favors

contact formation between highly conserved residues, and

penalizes contacts among highly variable residues. Hence,

this function takes into account the positions of pairs of

residues in contrast to the singlewise score, which considers

residues separately. The underlying concept here is that

positions that form contact should be highly conserved,

because introducing even mild changes in these positions

would abrogate interhelical contact.

The singlewise and pairwise score functions do not

include terms that penalize the formation of possible steric

clashes between the helices. Generally, the positions and tilt

angles can be derived from cryo-EM data. However, these

data are potentially inaccurate due to limited resolution. A

scoring function that contains an approximation of penalties

due to steric clashes could be useful for a limited exploration

of the conformation space with respect to helix positions and

tilt angles. We thus defined a third score function, which

included, in addition to the terms in the pairwise score,

penalties for conformations, in which a helix is potentially in

violation of another’s approximate exclusion volume.

METHODS

Conservation analysis

The conservation of amino-acid residues in the TM domains of the proteins

were calculated using the ConSurf server (Glaser et al., 2003) with the

Rate4Site algorithm (Pupko et al., 2002). Homologs were collected using

5 PSI-BLAST iterations and a BLAST e-value cutoff of 1 (Altschul et al.,

1997). We asserted by visual inspection of the alignments that there were no

significant gaps in the TM domains of all the proteins under study.

Score functions

To each configuration of the helix bundle produced by the search method,

we assign a score. The score is based on four terms, such that:

1. Hydrophobic residues face the lipid environment and hydrophilic

residues are directed toward the protein core.

2. Conserved residues face the protein core and variable residues face the

lipid environment (Fig. 1).

3. Highly conserved residues on different helices are in close proximity,

whereas highly variable residues are distal.

4. A penalty for potential steric clashes.

For each conformation the score is generally defined as follows, where

the summation is on every residue pair i,j in the TM domain:

Score ¼+
i

ð2ðBi � ½ÞHi
1 2ðBi � ½ÞCiÞ

1 +
i;j

ðPi;j � Qi;jÞ: (1)

In Eq. 1, Ci are the normalized evolutionary-conservation scores assigned

by Rate4Site (Pupko et al., 2002) (Fig. 1) and Hi the desolvation free

energies of transfer from water to membrane (Kessel and Ben-Tal, 2002);

Bi is the burial score associated with each residue, i.e., the extent of that

residue’s contact with other helices (Fleishman and Ben-Tal, 2002); Pi,j is

a pairwise term that promotes contact between highly conserved residues

and penalizes contact between highly variable residues; and Qi,j is a penalty

for formation of severe van der Waals clashes.

High Ci and Hi values indicate that a residue is conserved and

hydrophilic, respectively. Hydrophobicity is taken into account only for

residue types that are associated with free energies of transfer .7 kcal/mol

(Kessel and Ben-Tal, 2002), and are counted only for residues i, for which

the burial scores Bi are ,0.5. Thus the hydrophobicity scale serves as

a significant penalty on the exposure of the most polar residues to the

membrane environment. The terminal turns (four amino-acid residues) from

each side of the TM segments are ignored in computing this penalty, because

residues in these regions may be accommodated by the polar environment at

the lipid-water interface (von Heijne, 1989). The contributions of proline

residues to the score is also ignored because they are often conserved due to

kinks they form in secondary structure rather than due to the promotion of

interhelical contacts (Baldwin et al., 1997).

Ci and Hi are singlewise terms that depend on the amino-acid site itself,

regardless of the protein conformation. In contrast, Bi is the burial score

associated with each residue i, and depends on the maximal contact formed

by each residue with other helices in the bundle (elaborated below). It

assumes values in the range 0�1, where zero indicates complete exposure to

the membrane environment and 1 indicates complete burial in another helix.

Maximization of the score defined in Eq. 1 favors the burial of

hydrophilic residues in the a-helix bundle and penalizes their exposure to

the membrane (the first term in Eq. 1). Similarly, the second term in Eq. 1

favors the burial of conserved amino acids in the bundle interior and

penalizes their exposure to the lipid. The third is a pairwise-contact term

favoring contact between well-conserved residues and penalizing contact

between highly variable residues.

P
i;j ¼ B

i
B
jðCi

1C
jÞ; (2)

where residues j and i are not .7 Å apart, and their respective burial scores

(B) are .0.2.

The fourth term in Eq. 1, Qi,j, produces a severe penalty on steric-clash

formation, and is summed on all pairs of residues i, j in the TM domain:

Qi;j ¼
N

1

di;j�Q
1 di;j 1Q� 2m

ðm�QÞ2

0

�����
d
i;j
#Q

Q, di;j
,m

d
i;j
$m

;

8<
: (3)

where di,j is the distance between residues i and j, Q is the threshold below

which the penalty assumes infinite magnitude, and m is the threshold above
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which the penalty cancels out. We chose this formulation for the penalty

because it produces a function that is continuous for di,j . Q, as is its first

derivative. A value of 2 Å was chosen for Q, to approximate the Ca van der

Waals radius (1.88 Å) (Tsai et al., 1999), and 2.5 Å was chosen for m. The

penalty is very large for distances close to 2 Å, but drops off quickly toward

zero at 2.5 Å. Thus, conformations are penalized only for severe steric clashes.

We tested different formulations of the score function presented in Eqs.

1�3 by assigning different weights to the various terms, and by using

different hydrophobicity scales. This formulation was found to work well in

identifying bacteriorhodopsin’s native-state structure from decoys. Hydro-

phobicity appears to be a poor indicator on its own for TM-helix orientations,

whereas contact between highly conserved residues is a good indicator.

The singlewise score function is defined as in Eq. 1 (Fleishman et al.,

2004), except that the pairwise contact terms P and the penalties on steric

clashes Q are neglected. Essentially this score function favors the burial of

conserved and hydrophilic residues in the protein core, but does not favor

contact between conserved residues. The pairwise score is similarly defined

as in Eq. 1 with the penalties for steric clashes being neglected.

Assessing the extent of interresidue contact

The score function defined in Eq. 1 is based on a quantification of the burial

of amino acids that mediate interhelical contact. In measuring the extent of

burial Bi of amino acid iwe consider two criteria, as elaborated by Fleishman

and Ben-Tal (2002). The first is the distance between the amino acid and the

principal axis of the other helix; the smaller the distance, the more deeply

buried the amino acid. The second is the orientation of the amino acid with

respect to the principal axis of the other helix; the more the amino acid is

directed toward the other helix, the better its burial.

Formally, we consider two parameters: the distance Di between amino

acid i and the axis of the other helix, and the angular orientation Ai of amino

acid i with respect to the axis of the other helix. We define the burial of an

amino acid as the intersection of these two criteria:

B
i ¼ SðDiÞ SðAiÞ; (4)

where S(Di) and S(Ai) are transformations of the distance and angular criteria

as defined in Eqs. 5 and 6 below.

The parameters used by Fleishman and Ben-Tal (2002) for the burial

function B were tailored specifically to TM-helix pairs with short interaxial

separations. In the more general case treated here, it was necessary to

reparameterize the function. By manually modulating these parameters with

regard to the structure of bacteriorhodopsin, we found the parameter values

t ¼ 60� and p ¼ 4 to be suitable for transformation of the angle Ai. For

transformation of the distance, we first subtract 4.3 Å from the value of Di

calculated for the distance between the amino acid and the axis of the other

helix. This value approximates the smallest possible distance between an

amino acid and another helix (the radius of an a-helix to its Ca atoms is

2.3 Å plus 2 Å for two exclusion radii), and approaches a value of 1 for S(Di)

if the amino acid is as close as possible to the axis of the other helix.

The parameter values chosen for transformation of the distance are t ¼ 10 Å

and p ¼ 6. Thus the two transformations for amino acid i are:

SðDiÞ ¼ 1

Di � 4:3

10

 !6

1 1

(5)

SðAiÞ ¼ 1

Ai

60

 !4

1 1

; (6)

where Ai and Di are expressed in degrees and Ångstroms, respectively.

Conformation search in TM proteins with
short loops

In those cases, where the TM helices are connected via short loops, e.g.,

rhodopsin, it is possible to sample the constrained conformation space

available to the a-helix bundle by using a modification of the method of

Monge et al. (1994), in which a-helices are treated as rigid bodies, and their

exclusion volumes and the lengths of the interconnecting loops are taken

into account. The software and low-resolution potential used were de-

veloped by Eyrich et al. (1999) (J. Gunn, private communication).

We began with the native-state structure, and systematically perturbed

the helix positions as follows. One helix was selected and moved around its

close-contact interfaces with other helices by shifting up and down, twisting,

and rotating; all of these changes were made by adding appropriate quadratic

bonus functions to the low-resolution potential and minimizing. The re-

sulting structures were then used as starting points for another round of

minimization of the low-resolution potential. In both cases, another bonus

function was added to the potential to help reward the TM orientations of the

helices. (Because in this software the conformational space is given in F-C

coordinates and no consistent embedding into Euclidean space is done by the

program, it was not possible to impose the membrane constraints in the

straightforward way.) This membrane function was based on the distances

between the termini of all of the helices besides the one designated to move.

It rewarded those intertermini distances (excluding those of the selected

perturbed helix) that remained within 4.5 Å of their original values. Thus

steric clashes resulting from the helix perturbations would tend to be

resolved inside the membrane, and conformations that did not respect the

TM orientations were penalized.

Several rounds of this procedure were completed using the best-scoring

structures as the initial structures to perturb. The resulting structures

were then screened for steric clashes and inappropriate TM orientations

using the energy functions, and finally clustered at 0.8 Å to produce our test

set.

RESULTS

Rhodopsin and the bacterial rhodopsins

We used rhodopsin as our main test case because it re-

presents the typical case for which the method is intended.

That is, it is a medium-size protein (7 TM segments), which

has been solved at intermediate in-plane resolution (9 Å)

(Unger et al., 1997), and shares sequence homology with a

large set of other G-protein-coupled receptors. Moreover,

its high-resolution structure (2.8 Å) (Palczewski et al., 2000)

allows us to test the prediction’s quality.

Baldwin et al. (1997) used the intermediate-resolution

cryo-EM maps of rhodopsin (Unger et al., 1997), as well as

conservation data, to manually infer a template structure,

which included the coordinates of Ca atoms. We did not use

their model structure of rhodopsin, but did employ the helix-

tilt angles and positions that they extracted from the cryo-EM

maps (Baldwin et al., 1997). The assignment of individual

TM segments to the helices seen in the cryo-EM maps was

also taken from Baldwin et al.’s analysis. In addition, we

used their data on the positions, directions, and extents of

kinks in the TM domain. In summary, the Ca positions of

each helix were generated according to the helix parameters

of canonical a-helices as observed in the intermediate-

resolution data (Unger et al., 1997).
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To test the singlewise function’s performance, each helix

was rotated in 5� increments around its principal axis (range:

0–360�), and its best-scoring orientation was selected.

Because the contribution to the singlewise score of each of

the helices is essentially independent of that of the others, we

superimposed the best-scoring orientations of each of the

seven helices to obtain an optimal template structure. The

root-mean-square deviation (RMSd) of this template from

the native-state structure of rhodopsin was 3.7 Å.

The search in orientation space is confined within a seven-

dimensional hypercube, where each degree of freedom sets

the orientation of one of the seven helices. To calculate the

distribution of RMSd values of conformations within this

hypercube to the native-state structure of rhodopsin, we

generated 2000 template conformations. In each of these

templates, every helix’s orientation was randomly selected

from a distribution with uniform probability in the range

0–360�. The RMSds of each of these templates from the

native-state structure of rhodopsin (Palczewski et al., 2000)

was then computed (Fig. 2). The optimal structure was found

within the lowest 3.5 percentiles of RMSd values, demon-

strating that even the relatively simple singlewise score

function is capable of retrieving a near-native structure from

a set of decoys (Table 1).

We also tested the singlewise score on the three

homologous bacterial rhodopsins, bacterio-, halo-, and

sensory rhodopsin II (PDB codes are 1c3w, 1e12, and 1jgj,

respectively). These three proteins share ;30% sequence

identity and their structures are quite similar (1–1.7 Å

RMSd; Fischer et al., 1992), but show some local structural

differences and no homology with rhodopsin. We extracted

the helix-axes parameters (tilt angles and positions) (Fleish-

man and Ben-Tal, 2002) from the proteins’ high-resolution

structures, and constructed canonical a-helices accordingly,

without modeling explicitly any deviations from helicity,

such as kinks and bulges. We then employed the singlewise

score and searched the conformation space (seven-dimen-

sional hypercube) exhaustively in the same manner as

explained above for rhodopsin. Table 1 summarizes the

results of the conformation searches. In all cases, as in

rhodopsin, the singlewise score detected templates that were

much closer to native than expected by chance.

Using the result of the exhaustive singlewise search as

a starting template structure of rhodopsin, we conducted

a conformation search employing the pairwise score function

that avoids steric clashes, and the Simplex optimization

method, which is a line-search algorithm for finding a local

optimum (Nelder and Mead, 1965). The RMSd of the

predicted structure from the native state (PDB code 1l9h)

was 3.1 Å, which is an improvement over the result obtained

by using the singlewise score function alone (3.7 Å). This

result is comparable with that obtained by Baldwin et al. (3.2

Å) (Baldwin et al., 1997). We tested whether subsequent use

of the two scores constitutes a viable search strategy on the

three homologous bacterial rhodopsin structures. However,

in these cases the pairwise score improved the RMSd of the

predicted conformations only marginally (data not shown).

The acetylcholine receptor

The nicotinic acetylcholine receptor (AchR) transfers the

electrical signal at the nerve-muscle synapse by the gating of

its TM pore (Hille, 2001). The channel is composed of five

homologous subunits (b, g, d, or e, and two a-subunits),

where each monomer consists of four TM domains (M1–

M4). The five M2 segments from each of the subunits line

the pore. The recently solved structure of the closed AchR at

4-Å resolution revealed an unexpected architecture, in which

the M2 helices appear to be embedded in water and

surrounded by an outer ring of the other TM helices

(Miyazawa et al., 2003), to which they form only a very

loose attachment. These loose contacts are thought to

facilitate the substantial changes in the orientations of the

M2 helices (Unwin, 1995).

We constructed a model of the AchR TM domain by

deriving the helix-tilt angles and positions (Fleishman and

Ben-Tal, 2002) from its native-state structure (PDB code

1oed). Canonical a-helices that fit the parameters of these

helix axes were then constructed. To predict the optimal

structure based on the pairwise score, we sampled 20,000

different combinations of orientations of the four helices

comprising a subunit. Fivefold symmetry across the AchR

subunits was enforced, and the best-scoring conformation

according to the pairwise score was selected. In contrast to the

cases of the rhodopsins, the relatively small number of helices

in each monomer of the AchR ensures that this number of

FIGURE 2 A histogram of RMSd values to the native-state structure of

2000 randomly generated templates of rhodopsin. The templates were

constructed according to the helical axes parameters obtained (Baldwin et al.,

1997) from the cryo-EM data of rhodopsin at 9 Å in-plane resolution (Unger

et al., 1997). The RMSd of the conformation with the best singlewise score

(3.7 Å from native) is marked by a dashed line, a value that is at the lowest

3.5 percentiles of the random conformations.
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orientations will adequately cover the conformation space.

This search yielded a structure that was 2.5 Å RMSd from the

native-state structure (Miyazawa et al., 2003) (Fig. 3 A).
In this predicted conformation (Fig. 3 A) the orientations

of helices M1 and M3 match the native state quite closely,

except for deviations from helical ideality in M3. Helix M4 is

largely exposed to the lipid (Fig. 3 B), a feature not typical of
other solved TM protein structures, which usually show

tighter interhelical interactions. Owing to this exposure,

there is a larger degree of uncertainty concerning the pre-

diction of this helix’s orientation, and indeed the optimal

orientation is skewed by ;100� relative to the native state.

The predicted orientation of M2 is offset to a slightly lesser

extent. The reason for the deviation of M2 from the native

state is that this helix is conserved quite homogeneously

throughout the segment (Fig. 3 B). The lack of a clear

conservation versus variability pattern precludes this helix’s

orientation with confidence.

Constraints imposed by short interconnecting
loops instead of by cryo-EM data

Many of the extramembrane loops that connect TM helices

are relatively short (,10 amino-acid residues) (Tusnady and

Simon, 1998). In principle, such short loops can impose

severe constraints on the conformation space that a pair of

helices is free to sample. Here, we were interested in testing

whether considering the constraints imposed by loop lengths

improves the prediction’s quality.

For conformation sampling, we adapted a technique that

was developed by Monge et al. (1994) for sampling the

conformations of secondary-structural elements in soluble

proteins. The method starts from the native-state structure of

the protein, and perturbs the secondary-structural elements’

positions and tilt angles while treating them as rigid bodies.

In contrast, the regions of the interconnecting loops that are

devoid of defined secondary structure are allowed to sample

conformations freely.

To construct a complete native-state structure, we added

the positions of the loop residues that are missing from the

PDB structure (1l9h). These missing loop residues were built

into our native state via minimization of our low-resolution

energy function of these loop residues, whereas the rest were

constrained to their positions as observed in the PDB

structure. The native state was then systematically perturbed,

and the resultant conformations were assessed with a low-

resolution energy function to penalize the formation of steric

clashes and covalent-bond strains. Nonphysical conforma-

tions were thus penalized (Monge et al., 1994). Hence, the

constraint on the helices’ positions and tilt angles is that the

lengths of the interconnecting loops are respected.

Another penalty was imposed on TM helices that assumed

a nontransmembrane orientation, i.e., for helices whose

termini were not located on opposite sides of the presumed

TABLE 1 Summary of the results of using the singlewise score function to calculate a near-native conformation of rhodopsin and

the three bacterial rhodopsins, bacterio-, halo- and sensory rhodopsin II

Protein

RMSd of randomly generated

conformations (6 SD) Å

RMSd of the highest-score

conformation from the

native-state structure (Å)

Percentile of highest-scoring

conformation

Bacteriorhodopsin 3.9 6 0.4 3.2 5.6

Halorhodopsin 3.3 6 0.4 2.5 4.2

Sensory rhodopsin II 3.5 6 0.4 1.8 0.01

Rhodopsin 4.5 6 0.4 3.7 3.5

The three bacterial proteins are related to one another in terms of sequences and structures, but show some local structural differences. Rhodopsin is different

in terms of architecture and sequence. Templates for the three bacterial rhodopsins were constructed on the basis of their high-resolution PDB structures.

Rhodopsin’s templates were constructed on the basis of helix-axes parameters (Baldwin et al., 1997) taken from its 9-Å in-plane resolution structure (Unger

et al., 1997). Percentiles were computed on the basis of a distribution of expected RMSd values for each protein (see Results). In all cases, the best-scoring

conformation is significantly closer to the native state than predicted by chance.

FIGURE 3 (A) A stereo view of the

TM domain of AchR (blue) super-

imposed on the predicted template

(red). Spheres mark the positions of

the cytoplasmic ends of the helices for

clarity. The RMSd between the native-

state and the calculated structures is

2.5 Å. Helices M1 and M3 were pre-

dicted quite accurately, but helices M2

and M4 were skewed by 90 and 100�,
respectively. (B) A view of the AchR

structure from the cytoplasmic side.

The residues are colored according to

the evolutionary-conservation scale shown in Fig. 1. M2 is homogeneously conserved explaining the inaccurate prediction. M4 is highly exposed to the

membrane. Hence, despite the clear conservation signal, there is a large degree of uncertainty in its orientation.
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membrane. Hence, the search method samples conformation

space that is available to the helix bundle, but penalizes non-

physical orientations. Structureswith high penaltieswere then

discarded to eliminate those that were clearly nonphysical.

Based on the high-resolution structure of rhodopsin (PDB

code 1l9h) as the template structure, we generated 108

modified templates, each differing from all the others by at

least 0.8 Å RMSd (Table 2). The structures were quite evenly

distributed in conformation space; sampled conformations

were up to 6.2 Å RMSd from rhodopsin’s native-state

structure.

Because the conformation-sampling method usually does

not generate conformations that form steric clashes (Monge

et al., 1994), we used the pairwise score without the terms

that penalize the formation of clashes. We note that in

ranking the resultant conformations, the score did not

incorporate any terms from the Monge et al. (1994)

conformational sampling technique. Strikingly, the native-

state structure of rhodopsin ranked second according to the

pairwise function (Table 2), demonstrating that short

interconnecting loops may indeed be used for identifying

near-native conformations, even without the constraints on

helix positions and tilts derived from cryo-EM data.

A more stringent criterion, testing the Pearson correlation

coefficient between the conformations’ scores and their

RMSds from the native-state structure, resulted in r¼ �0.78

(Fig. 4). This high anticorrelation demonstrates that the

pairwise score is capable not only of detecting the native-

state conformation, but also of discriminating near-native

and far-from-native conformations. We also analyzed the

performance of this combination of pairwise score and

search method on the structures of bacteriorhodopsin and

aquaporin-1 (PDB codes 1c3w and 1j4n, respectively). The

results are summarized in Table 2. Despite the sequence,

structural, and functional heterogeneity of the three proteins,

the results for all are encouraging.

Deviations from a-helicity have only a local
effect on the prediction’s quality

Many TM helices exhibit deviations from a-helicity, in-

cluding p-bulges and kinks. These deviations were shown to

have functional importance in some cases (Ubarretxena-

Belandia and Engelman, 2001). Kinks are sometimes

discernible in cryo-EM maps, e.g., in rhodopsin’s 9-Å map

(Unger et al., 1997). When observed, the kinks can be

incorporated into the conformational search methodology in

a straightforward manner, as we have done for rhodopsin

above. Recently, it was shown that the positions and

directions (though not the magnitudes) of the majority of

the kinks observed in high-resolution structures could also be

inferred from sequence data alone (Yohannan et al., 2004).

However, no computational method is yet available to

identify p-bulges.

Fig. 5 shows the consequences of modeling as a-helices

domains that contain p-bulges and bent regions in the case of

sensory rhodopsin II. As mentioned above, to generate the

calculated template (Fig. 5 B), the tilt angles and positions of
the helix axes were inferred from the high-resolution

structure (PDB code 1jgj), and canonical a-helices were

constructed. The singlewise score was then used to rank all

the possible orientations of each of the helices, and the best-

scoring conformation was selected (Fig. 5 B). Obviously, the
prediction’s accuracy in the region surrounding the devia-

tions from helicity is relatively low, but is quite high in other

regions of the same helices, and in other helices (RMSd of

the prediction from the native-state structure is 1.8 Å).

Hence, we conclude that the adverse effects of helical

deviations on the prediction quality are mostly local.

Uncertainties in the TM helix boundaries have a
negligible effect on the prediction’s accuracy

Even when helix positions and tilts are derived reliably from

cryo-EM measurements, different TM boundaries can be

fitted into the intermediate-resolution images. Qualitatively,

changes at the TM-domain termini are not expected to have

very large effects on the prediction’s quality according to the

scoring schemes suggested here, because the calculations are

based on the average properties of relatively long helical

stretches (5–6 helical turns).

To examine the implications of erroneous choices of the

boundaries, we changed the boundaries of the TM spans in

the construction of templates of rhodopsin and reevaluated

the prediction. Juxtamembrane regions are often spotted by

charged residues. Because the score functions penalize

TABLE 2 Summary of results using a modified version of the conformation-sampling method of Monge et al. (1994) in

conjunction with the pairwise score function

Protein

Number of structures

sampled

Maximal RMSd from

native of sampled

structures (Å)

RMSd of the

highest-score

conformation from the

native-state structure (Å)

Score rank of the native

structure

Correlation coefficient (r)

of RMSd values versus

pairwise scores

Rhodopsin 109 6.2 1.5 2 �0.78

Bacteriorhodopsin 96 4.0 1.9 30 �0.54

Aquaporin-1 26 3.7 0.9 6 �0.63

The three TM proteins that were tested are heterogeneous in terms of functions, structures, and sequences. The anticorrelations obtained in all three cases

demonstrate that the pairwise score is capable of ranking conformations according to their similarity to the native-state structure in a variety of cases.
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conformations that expose very polar residues to the lipid

environment, we tested only helix stretches that are shorter

than the TM-domain definitions. Thus, in each iteration,

every helix was shortened by variable amounts according to

a uniform-probability distribution (0�4 positions). We drew

200 such domain definitions, and used the singlewise score

to identify a near-native conformation for each of these

definitions according to the method outlined above.

The RMSd values of the highest-scoring conformations to

the native-state structure of rhodopsin for this sample were

very dense around 3.7 Å, which is the value obtained for the

original TM-boundary definition, with a standard deviation

of 0.1 Å. This result demonstrates that the score function is

indeed minimally sensitive to moderate changes in the

hydrophobic boundaries.

DISCUSSION

Structure determination of TM proteins at high resolution

remains an intricate task despite recent advances. On the

other hand, several TM proteins have been solved at in-

termediate resolution (5–10 Å). These data have mostly been

employed to gain a general understanding of the pro-

teins’ architectures, but the positions of individual amino-

acid residues could not be inferred (e.g., Holm et al., 2002;

Ubarretxena-Belandia et al., 2003)). Hence, it has been

impossible to gain a clear view of the molecular determinants

affecting protein stability and function from these data. Here,

we have explored how TM helices’ conservation profiles and

hydrophobicity can be used in conjunction with data on helix

tilts and positions for structure prediction.

We employed accurate measures of conservation (Pupko

et al., 2002) and hydrophobicity (Kessel and Ben-Tal, 2002)

in a fully automated method. Such measures have been used

previously to predict structures from cryo-EM maps (e.g.,

Baldwin et al., 1997), but these methods were mostly

manual, and often required an alignment of a large number

of homologous sequences. Here, we showed that even

a relatively small set of sequences (36 in the case of the

bacterial rhodopsins) may be sufficient to engender accurate

predictions thanks to the more sensitive measures of con-

servation that are currently available (Pupko et al., 2002).

Importantly, the fact that the methods are automatic

provides a more objective and reproducible way of modeling

TM domains. In particular, in many cryo-EM maps of TM

proteins, the connectivity between helices is not discernible,

leading to an ambiguity with regard to the assignment of

hydrophobic sequences to the helices seen in the map (e.g.,

Ubarretxena-Belandia et al., 2003). In principle, there may

be up to n! different assignments, where n is the number of

helices in the bundle. In practice, many of the assignments

may be eliminated at the outset if they imply the connection

of distant helices by short loops (Enosh et al., 2004). In some

cases, biochemical data may provide sufficient constraints

for assignment, e.g., regarding the positions of pore-lining

helices (Fleishman et al., 2004). Still, it may be that several

contending assignments would need to be carefully consid-

ered in view of experimental data (Enosh et al., 2004). The

methods we have suggested can be helpful in automatically

generating and comparing models for different assignments,

in which the combinatorial complexity would preclude

manual model building.

Thus, after parameterization using bacteriorhodopsin, we

tested and challenged this approach with a variety of different

TM-protein structures, including rhodopsin, bacterial rho-

dopsins, aquaporin 1, and the AchR. We have used several

different search methodologies for structure prediction, and

all produced relatively promising results. This is encouraging,

because it demonstrates that the score functions are robust, in

the sense that their outcomes are sound independently of the

search method used.

Our study has yielded a number of rules that must be met

for the protein under study, if this approach is to succeed.

First, the cryo-EM map must show that each helix is neither

overly buried in the protein core nor overly exposed to the

FIGURE 5 (A) A view from the extracellular side of the TM domain of

sensory rhodopsin II (PDB code 1jgj). The locations of a p-bulge and a kink

are marked with arrows. (B) The template of sensory rhodopsin II that was

assigned the highest singlewise score. Even though the calculated template

shown in panel B is based on canonical a-helices, the deviations from

a-helicity have a minor effect on the calculated conformation. PanelsA and B

are colored according to the evolutionary-conservation scale shown in Fig. 1.

FIGURE 4 A scatter plot showing the RMSd values from the native state

(PDB code 1l9h) versus the pairwise score for 109 different template

structures of rhodopsin. The two measures are anticorrelated (r ¼ �0.78).

The solid line marks the linear regression of the data points. The arrow

marks the point of the native state structure.
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membrane (or the pore lumen in the case of large channels).

Accordingly, it is due to the uncharacteristic exposure of the

M4 helix in AchR that its calculated orientation is far from

the native state (Fig. 5). Second, the conservation profile of

each helix must be sufficiently variable. Helices that are

highly conserved throughout (such as M2 of AchR) do not

contain a clear enough signal to reveal their orientations. A

threshold of sequence variability necessary for accurate pre-

dictions is difficult to set a-priori. However, a rule of thumb

is that the TM domain should show a helical pattern of

variability versus conservation, as seen in most of the cases

studied here (e.g., Fig. 4).

Reassuringly, our results on AchR demonstrate, that even

in those cases in which a number of helices in the structure

cannot be oriented reliably (M2 and M4), the others can still

be accurately retrieved (M1 and M3). In the setting of a

structure-prediction exercise, it would be possible to deter-

mine which helices cannot be oriented reliably on the basis

of their conservation profiles and their exposures to the mem-

brane according to intermediate-resolution data.

Our results show that in other cases, the score functions

can identify near-native conformations (Figs. 2 and 4; Tables

1 and 2). The fact that the parameterization, which was

conducted to reproduce the native structure of bacteriorho-

dopsin, also retrieved quite closely the native structures of

two homologous proteins (sensory rhodopsin II and

halorhodopsin) and three very different TM proteins

(rhodopsin, aquaporin-1, and AchR) is an indication of the

method’s predictive ability. The results show that this scor-

ing scheme, though simple, is capable of reliably ranking

decoy structures according to their RMSds from the native

state (Table 2, Figs. 2–4).

The main focus of this study has been the development of

score functions for structure prediction in conjunction with

intermediate-resolution cryo-EM maps. However, the results

using a conformational search method that takes into account

interconnecting loop lengths (Monge et al., 1994) have been

encouraging for proteins with small extra-membrane do-

mains. Further research should be devoted to the possibility

of predicting the structures of TM domains with short loops

even without the constraints imposed by cryo-EM data on

helix positions and tilt angles. Furthermore, the results based

on rhodopsin’s intermediate-resolution structure (Table 2)

indicate that a limited exploration of the conformational

space defined by the helix positions, tilt, and azimuthal

angles may improve structure prediction in cases, in which

these parameters cannot be approximated with high confi-

dence from the cryo-EM data. The inclusion of atomistic

detail may improve these results further by capturing

the subtleties of helix-packing interactions.

It was demonstrated that short sequence motifs could drive

the dimerization of TM domains (Lemmon et al., 1992;

Javadpour et al., 1999; Russ and Engelman, 1999, 2000;

Dawson et al., 2002). For instance, the GxxxG motif, in

which two Gly residues are separated by three other residues

was shown to induce the close association of two TM helices

(MacKenzie et al., 1997). It was also shown that Ala and

small polar residues (Ser and Thr) could replace the Gly

residues in the motif and induce contact formation (Dawson

et al., 2002). We previously used such sequence rules for

predicting likely conformations of pairs of TM helices

(Fleishman and Ben-Tal, 2002; Fleishman et al., 2002).

Here, we did not explicitly utilize information regarding

amino-acid packing propensities, because the importance of

these residues for packing is reflected in their evolutionary

conservation (Sternberg and Gullick, 1989).

We note that the results presented here show that the

methods are quite robust in terms of sensitivity to structural

or sequence differences. Changes in TM boundaries, for

example, did not have a significant effect on the predicted

templates of rhodopsin. Some recently solved TM protein

structures show helices that are not straight (e.g., Jiang et al.,

2002; Miyazawa et al., 2003). In the case of the AchR we

used canonical a-helices, even though there are some

marked deviations from a-helicity in M2 and M3, yet the

predictions did not suffer to any great extent due to these

deviations (Fig. 3). Nor have p-bulges and kinks affected the

prediction’s quality extensively (Fig. 5). Furthermore,

although retinal was not modeled in the rhodopsins, the

helices’ orientations in all cases were reproduced quite

accurately. Indeed, explicitly modeling these deviations from

a-helicity and the addition of prosthetic groups should

improve prediction accuracy. However, from the cases we

have examined, we conclude that the strong conservation

signal in many TM proteins (exemplified in Fig. 1) ensures

that various structural deformations, that might not be

accounted for in the cryo-EM data, have mostly a local effect

on the accuracy of the prediction, and that this effect is much

diminished in unaffected helices.
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