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Supplemental Materials and Methods  

 

Experimental assays 

Availability of plasmids 

All of the designs reported here, except for 11 that showed binding activity 

(designs 3, 6, 14, 22, 23, 42, 54, 57, 67, 79, and 84), are available as DNA plasmids 

from the AddGene service (http://www.addgene.org). Designed genes were subcloned 

between Nde/XhoI sites in an in-house yeast display plasmid1, named pETCON.  

pETCON is the pCTCON plasmid reported in ref. 1 with the following modifications: 

(a) a frameshift mutation in the CD20 encoding region; (b) a Nde restriction site 

immediately downstream of the NheI site; and (c) a XhoI-Gly2 spacer sequence 

immediately upstream of the BamHI restriction site. 

Target protein preparation  

Production and purification 

SC1918/H1 Hemagglutinin was produced and biotinylated according to 

previous reports2.  The gene encoding Mtb  ACP2 was custom ordered from 

Genscript (Piscataway, NJ) and subcloned into a pET vector with C-terminal hexa -

histidine and AviTags.  The plasmid was transformed into BL21 (DE3) E. coli and 

protein expression was induced by the Studier autoinduction method3. 

After expression for 16 h at 18oC, cells were pelleted, resuspended into buffer 

HKGlu (20 mM Hepes, 150 mM potassium glutamate pH 7.4) and sonicated to lyse 

cells.  After clarification by centrifugation, cells were applied to a gravity flow Ni2+-

NTA column and purified by step elution in a buffer containing 400 mM imidazole, 

20 mM Hepes, 150 mM potassium glutamate pH 7.4.  Mtb ACP2 was then desalted 

into buffer HKGlu, quantified by A280 absorbance using the estimated extinction 

coefficient e=12,660 M-1cm-1, and flash frozen in liquid nitrogen until further use.  

Mass spectrometry showed that the protein was produced full-length in the apo- form 

without the phosphopantetheine prosthetic group attached to Ser38.  Circular 

dichroism scans at 22oC in PBS pH 7.4 showed pronounced minima at 208 and 222 

nm indicative of a helical protein, as expected.   

To test binding to the constant region of human IgG Fc, the commercially 

available therapeutic antibody Rituximab was used.  
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Biotinylation 

AviTag Mtb  ACP2 was C-terminally biotinylated using the BirA kit from 

Avidity (Aurora, CO).  Aliquots were thawed on ice and added to a final 

concentration of 40 µM to a mixture containing (per 100 µL) 10 µL biomix A, 10 µL 

biomix B, 10 µL d-biotin (500 µM stock), 1 µL E. coli biotin ligase (3 mg/mL 

stock), and the balance buffer HKGlu.   After incubation at 22oC for 5 h, Mtb  ACP2 

was separated from the biotin ligase by Ni2+-NTA affinity chromatography and 

desalted into buffer HBS (20 mM Hepes, 150 mM sodium chloride pH 7.4) using a 

large-bore desalting column.  Biotinylation was confirmed by mass spectrometry, 

and protein was flash frozen until further use.  

 Amino groups of Rituximab were nonspecifically biotinylated using the 

Chromalink Biotin labeling kit (Solulink, San Diego) following the manufacturer’s 

instructions. Antibodies were cross-linked to 3-4 biotin molecules as indicated by 

absorbance measurements. Protein was stored at 4oC and used within 2 months after 

biotinylation. 

 

Conjugation  

 

Biotinylated Mtb  ACP2 aliquots were thawed on ice and added in excess at a 6:1 

molar ratio to streptavidin-phycoerythrin (SAPE) (Invitrogen, Carlsbad, CA) on ice 

for 1 hr.  ACP2-SAPE conjugate was separated from free ACP2 on a Sephacryl S-

200 size exclusion column using a flow rate of 1 mL/min and a mobile phase of 

buffer HBS.  Conjugate was concentrated using a 100 kDa MWCO Amicon Ultra 

centrifugal filter unit (St. Louis, Mo.) and quantified by fluorescence intensity of PE 

(excitation wavelength 495 nm, emission wavelength 575 nm, cutoff 530 nm) using 

a Spectramax M5e fluorescence plate reader (Molecular Devices, Sunnyvale, Ca.).  

Unconjugated SAPE was used for the standard curve for protein quantification.  

Formation of ACP2-SAPE conjugate was verified by denaturing gel electrophoresis.  

ACP2-SAPE conjugate was diluted to 2 µM in buffer HBS and stored at 4oC for no 

more than 2 weeks before use.    
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Binding studies 

Genes encoding designs were custom ordered from Genscript (Piscataway, NJ) and 

cloned in-frame into an in-house yeast display plasmid pETCON2. For designs 

targeting HA, Binding studies were done essentially as described1 using 1 µM of a 

biotinylated SC/1918/H1 HA1-2 ectodomain.  Secondary labels were anti-cmyc FITC 

(Miltenyi Biotec, Auburn, CA) to monitor design surface expression and SAPE 

(Invitrogen, Carlsbad, CA) to monitor binding of the biotinylated antigen.  For 

designs targeting Mtb ACP2, cells were grown overnight from colonies in SDCAA 

media and then induced for 24 h at 22oC in SGCAA media.  Cells were washed in 

PBSF buffer (20 mM sodium phosphate, 150 mM NaCl, 1 mg/ml BSA Fraction V pH 

7.4) and labeled with 500 nM ACP2-SAPE conjugate for 2 h at 22oC in 1.5 mL 

eppendorf tubes.  Cells were then incubated with anti-cmyc FITC on ice for 10 min.  

Cells were pelleted at 13,000 xg for 30 s, washed once with 200 µL PBS, and stored 

as pellets on ice until immediately before reading on a flow cytometer. For designs 

targeting Fc, yeast cells carrying the design-expression vector were cultivated and 

induced as described above. They were washed once with PBSM (PBSF with 10 

mg/ml BSA) and labeled with 750 nM Rituximab for 4-5 h at 4oC, before adding 

SAPE (at 1:4 ratio of SAPE to Rituximab) and anti-cmyc FITC antibody (1:100 

diluted per volume) for an additional 1h incubation. Cells were washed once with 200 

µL ice-cold PBSM and instantly examined via flow cytometry.  

In all cases, binding signal was quantified as the mean phycoerythrin 

fluorescence of the displaying population of cells using a 488 nm laser for excitation 

and a 575 nm band pass filter for emission (appropr iately compensated) using either 

a Cytopeia inFlux Cell Sorter or an Accuri C6 flow cytometer.  A binding signal of 

less than 1.4 of treated to control cells was used as the cutoff for potential binding.  

Binding studies were repeated at least twice on separate days before designs were 

discarded. All designs used for this study surface-displayed on the yeast surface.  

Surface display on yeast requires passage through the endoplasmic reticulum (ER).  

The ER quality control mechanism restricts some grossly misfolded proteins from 

reaching the cell surface4.  Thus it is plausible that a subset of the designed binders 

used in this benchmark set do not adopt the designed fold. 
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Per-group scoring methods 

 

Group 1 (Sanbo Qin and Huan-Xiang Zhou, Florida State University)  

 

Our method is based on the electrostatic free energy of the transient complex formed 

by the protein complex.  The transient complex is an intermediate along the pathway 

to form the native complex5.  The transient complex separates the bound state, which 

defines the native complex, with numerous short-range interactions but restricted 

translational and rotational freedom, from the unbound state, in which the partner 

proteins form at most a small number of interactions but have expanded translational 

and rotational freedom.  Specifically, the transient complex is located at the outer 

boundary of the bound-state free-energy well.  For many protein pairs, long-range 

electrostatic attraction has been found to enhance the rates of association6.  Such cases 

feature favorable electrostatic free energies in the transient complex, and the rate 

constants of protein association can be quantitatively predicted7. 

 

We calculated the electrostatic free energies of ZDOCK benchmark 1.0 set of 59 

protein pairs, and found that nearly all of them have favorable electrostatic free 

energies, both in the native complex and in the transient complex.  It therefore seems 

that electrostatic free energy can be used as a scoring function to select near-native 

docking poses from non-native ones.  In principle, the electrostatic free energy in 

either the native complex or the transient complex can be used.  However, docked 

poses may contain spurious close contacts between charged groups across the 

interface.  The detrimental effects of such spurious contacts are much reduced in the 

transient complex, since generally the partner proteins are separated by a layer of 

solvent in the transient complex5.  Therefore we settled on using the electrostatic free 

energy in the transient complex as our scoring function for docking poses. 

 

This scoring function was found to be very successful in this experiment. In the 

preliminary round (CAPRI Target 43), where 21 complexes were provided, only one 

of which was a co-crystal structure (see Main Text), we ranked the single native 

complex at the very top.  In the comprehensive design discrimination benchmark 

(CAPRI Target 44), we ranked the only complex with evidence of binding (design 45) 



 5 

as fourth, with very small differences in electrostatic free energy from the top three 

ranked models. 

 

We followed the same method for Target 45.  For each model system, 50 steps of 

steepest-descent energy minimization were performed on hydrogen atoms to remove 

potential clashes.  The ensemble of configurations representing the transient complex 

for each model system was generated using a previously developed procedure5. 

 Briefly, the ligand was t ranslated and rotated around the putative native complex, as 

given to us in Target 45.  The rotation around the axis perpendicular to the least -

squares plane of the interface exhibits a characteristic sharp transition: the range of 

allowed rotation angles is very limited in the bound state but rapidly widens as the 

transient complex is passed.  This sharp transition allowed the transient complex to be 

identified.  

We then calculated the electrostatic free energies on 10 representative configurations 

of the t ransient complex and used their average as the scoring function.  The 

electrostatic free energies were calculated by the APBS program (version 1.2.1), with 

the following parameters: the grid dimensions were 193 × 193 × 193, with coarse grid 

size at 1.5 Å and fine grid size at 0.5 Å.  The dielectric boundary was defined as the 

van der Waals surface of the solute molecule 5 (set with the option “srfm mol, srad 

0.00”).  The atomic partial charges were those of the AMBER force field and were 

distributed to the grid with the option “chgm spl2”.  The temperature was set to 298 

K.  The solute and solvent dielectric constants were 4 and 78.5, respectively.  The 

ionic strength was 60mM. 

 

Finally the average electrostatic free energy of the transient complex was transformed 

to a normalized score, using the following scheme: < –1 kcal/mol in electrostatic free 

energy corresponds to a score of 1 (binds); between –1 and 0 kcal/mol a score of 2 

(likely to bind); between 0 and 1 kcal/mol a score of 3 (likely not to bind); between 1 

and 2 kcal/mol a score of 4 (does not bind); and higher electrostatic free energies 

correspond to a score of 5 (uncertain). 

 

Group 2 (J.C. Mitchell and O.N.A Demerdash, University of Wisconsin, USA) 
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Our model combines biophysics and informatics.  It is very efficient, requiring 

only seconds to calculate.   To create the model, we applied support vector 

machines to a large number of energetic features calculated for each protein 

interface.  Our goal was to classify a given structure as a binder or non-binder 

and provide a score able to distinguish between the two classes for most 

examples. 

 

A data set was produced using four different types of binders and two different 

types of nonbinders.  The nonbinders used for training included docking 

decoys as well as a subset of the nonbinders that were part of the CAPRI 20 

prediction exercise.  Examples of binders included crystal structures from 

three different data sets and near-native docking predictions. In each case, a 

relatively small amount of the data was used for training and the remainder 

used for testing.  We believe the use of diverse training data helps make the 

model more robust, and this is clearly indicated by its performance.  

 

Our complete feature set consisted of a large number of energetic terms that 

were implemented for use with our docking program, ReplicOpter8.  These 

terms include six electrostatics potentials, four hydrogen bonding potentials, 

stacking/pi interaction potentials, a softened van der Waals potential, atomic 

contact energy, and shape specificity. 

 

Using different small training sets created from the data described above, we 

could obtain many models with the following characteristics: 

 

1.     classifies crystal structures for the nontraining test sets with at least 75% 

accuracy 

2.     classifies Rosetta-designed (presumed) nonbinders with at least 80% 

accuracy 

3.     scores Rosetta-relaxed complexes similarly to the original crystal 

structures  

4.     strongly classifies the Rosetta-designed binder for which binding is 

confirmed (#10 from Target 43) 
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Complete details on the training procedure, along with references and 

descriptions of all energetic terms and data sets, will be provided in a 

separate manuscript. 

 

Group 5 (Mayuko Takeda-Shitaka and Genki Terashi, Kitasato 

University, JP) 

 

In order to provide a valid discrimination between the interfaces that bind and 

those that do not bind, we constructed a scoring function from the training 

data set (1619 protein-protein interfaces, NR70% of sequence identities). In 

this experiment, we used a newly developed atom-atom potential instead of a 

previously developed residue based scoring function (CIRCLE QA program 9) 

used in SKE-DOCK 10. 

The pairwise atomic potential between the atom of type i and j at the interface 

can be described as: 

∑ 
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where Ntraining is a number of training data set (=1619), fnative(i,j,m) is a 

frequency of i-j contacts occurring in protein-protein interactions of the mth 

native structure, fdecoy(i,j,m) is that of 100 decoy models, which are obtained 

from the FFT based rigid-body docking method (like ZDOCK11). In the usual 

case, the native structures were unknown. Therefore, the near-native 

solutions were not filtered from the decoy models. The optimized cutoff 

distance of atom-atom interaction and weight (w) are 6.0Å and 0.02, 

respectively. 

 

For scoring, the given 207 structures were re-docked by rigid-body docking. 

Then according to the shape complementarity, best 100 models were 

selected as decoy for each structure. The pairwise atomic potential were 

summed up and Z-scores were calculated by comparing with potential 

distributions of 100 decoy models. A high Z-score means that the protein -

protein interface of the given structure has better pairwise atomic potential 
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than decoys. We assigned the 207 structures into five classes according to 

the Z-scores as follows: 

    1 (binds)        3.0 <= Z-score     

    2 (likely to bind)    2.0 <= Z-score < 3.0  

    3 (likely not to bind)    1.0 <= Z-score < 2.0     

    4 (does not bind)    Z-score < 1.0     

    5 (uncertain)         could not finish the re-docking step due to the technical 

problems 

 

 

 

Group 6 (Iain H. Moal, Xiaofan Li and Paul A. Bates 

Cancer Research UK London Research Institute, UK.) 

 

All 207 structures were redocked, globally with SwarmDock12, and locally with 

PyRosetta 13.  Encounter complex formation and dissociation was simulated with 

BioSimz14.  A number of metrics, which characterise the results of these 

computations, were derived.  Numerous interface descriptors and binding energy 

terms were also calculated: the analytical continuum solvent (ACE) potential terms15, 

DComplex16, Rosetta energy terms13, interface packing and surface complementarity 

scores17, and generalised Born (GBSW) electrostatic and non-polar solvation 

energy18.  Further parameters, describing interface flexibility and flexibility 

differences of core and peripheral interface residues, were ca lculated using elastic-

network normal-mode analysis 18, as well as counts of the number of residues with 

binding energies below various energy thresholds and the number of buried hydrogen-

bond (H-bond) donors and acceptors.  The distribution of these parameter values 

indicates that, compared to the designed, the benchmark complexes have a lower H -

bond binding energy, fewer unsatisfied buried H-bond donors and acce ptors, a more 

favorable change in ACE energy upon binding, and more favorable encounter -

complex formation dynamics.  These parameters are sufficient to distinguish the 

benchmark and designed complexes, as a parameter set capable of binomial 

classification at 97.6% accuracy (95.7% accuracy with leave -one-out cross validation) 

was found, using a support vector machine with an analysis of variance kernel and a 

population-based forward greedy feature selection algorithm.  However, as the 
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designed complexes are not to be used in the discrimination of the two categories, the 

parameters were used in linear combination, in an energy function trained on 

empirically derived binding free-energy values. 

 

Dissociation constants for 95 complexes in the Benchmark 3.0 were manually 

amalgamated from the literature and empirical binding free energies were calculated. 

This affinity benchmark was later expanded upon19 and is available on-line 

(http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/). Linear regression of a 

number of parameter sets were performed, for w hich thresholds could be found to 

discriminate the benchmark complexes from the designed with between 70% and 90% 

accuracy.  Values shown correspond to an energy function composed of the following 

parameters, along with their relative importance (derived from normalized weights), 

where the first two parameters are Boolean: Is SwarmDock top ranked structure under 

5Å root-mean square deviation (RMSD) to bound? (0.076), does the biggest 

SwarmDock cluster correspond to the bound? (0.009), Rosetta all-atom pair potential 

(fa_pair; 0.299), Rosetta coarse-grained pair potential (0.122), van der Waals (0.192), 

BioSimz predicted kon constant (0.027), interface packing (0.181), surface 

complementarity (0.176), ACE self -solvation energy (0.780) and GBSW solvation 

energy (0.071).  The regression has a RMS error of 2.76 and a correlation of 0.414, 

has an area-under-ROC of 91.2% and can be used to correctly classify 88.4% of the 

complexes with a threshold of -9.55kcal/mol.  Bins were chosen such that the 'binds' 

category contains complexes with predicted binding energies below -9.8 kcal/mol, 

and the cutoffs for the higher bins, likely to bind, uncertain, likely not to bind and 

don't bind, are chosen at intervals of 0.2 kcal/mol. 

 

Group 7 (Martin Zacharias) 

A composite score  based on three equally weighted components was used to 

evaluate protein-protein complexes. It consists of the docking score after 

docking re-minimization in rotational and translational coordinates of protein 

partners employing the program ATTRACT20 and a coarse-grained force field 

for the protein partners 21. The starting structure for docking minimization was 

the provided model or native complex structure (hereafter termed reference 

structure).  The scoring energy unit is 1 RT, where R is the gas constant; and 

T is room temperature). 
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The ATTRACT score is a knowledge based docking scoring function 

optimized on a large number of protein-protein complexes21. Typically, the 

absolute value of the ATTRACT score for minimized complexes gives an 

impression if a complex is favorable or not. However, occasionally the score 

alone is insufficient.  

The second contribution to the composite score is related to the deviation of 

the minimized complex from the starting structure (RMSD of the ligand 

multiplied with 1 RT/Ångstrom).  

This contribution is based on the observation that for experimental structures 

of protein-protein complexes docking minimization using ATTRACT results in 

a minimized complex with an RMSD (of the ligand relative to the fixed 

receptor protein) of <  1-3 Å. Deviations larger than 3-5 Å may indicate 

unrealistic complex structures.  

The third contribution to the composite score required a systematic docking 

run over the whole surface of the protein partners [following published 

protocols, ref. 20 ].  If the rank of the docking minimum closest to the reference 

structure was within the 10 top ranked solutions a scoring penalty of 0 RT, for 

rank 10-100 a penalty of 6 RT, for rank 100-1000 a penalty of 12 RT and for 

rank > 1000 a penalty of 18 RT was added, respectively. The rationale for this 

contribution is: 

For experimental complex structures (bound partners) a systematic ATTRACT 

docking search typically gives the docking minimum closest to experiment as 

top ranking solution or within the 10 best scoring solutions. If this is not the 

case for a given protein -protein complex it indicates that the complex structure 

is probably unrealistic. 

The above composite score was transformed to a normalized score: 

 

1. raw composite score < -6 RT => normalized score 1 (binds). 

2. -6 RT < raw score < -3 RT: normalized score 2 (likely to bind). 

3. -3 RT < raw score < 0 RT: normalized score 3 (likely not to bind) 

4. raw score > 0 R : normalized score: 4 (does not bind). 

normalized score 5 (uncertain) was not needed. 

 

For the largest fraction of the Zdock structures the raw score was better -6 RT 
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(rationale for choosing -6 RT as limit for normalized score 1). For very few 

Zdock-cases a raw score above 0 RT was found. Therefore. 0 RT was chosen 

as the limit to distinguish non-binders (score 4). With this scheme 108 of the 

118 Zdock complexes scored 1 or 2 and 60 out 87 of the designed complexes 

scored 3 or 4 (12 scored 1).  

 

Group 8 (Hahnbeom Park, Jun-su Ko, Hasup Lee, and Chaok Seok, 

Seoul National University, Korea) 

 

A discrimination score expressed as a weighted sum of the following seven 

terms was developed: 1) the DFIRE potential22, 2) van der Waals energy with 

CHARMM19 parameters, 3) Coulomb energy with a distance-dependent 

dielectric constant and CHARMM19 parameters, 4) an empirical solvation 

term described by solvent-accessible surface area and atomic solvation 

parameters (ASP)23, 5) a knowledge-based orientation-dependent hydrogen 

bond energy24, 6) a sequence-conservation score derived from PSI-BLAST 

profile25, and 7) a sidechain entropy derived from iteratively calculated 

probability distribution of interface rotamers 26. 

 

The seven weight parameters for the discrimination score were obtained by 

minimizing the number of complexes in the overlapping score region where 

binding and unbinding training complexes coexist. The training set for binding 

complexes contains 74 binding complexes with known binding affinities 27 and 

that for unbinding designed complexes are those provided by the Baker group 

as CAPRI round 20 targets that were found not to bind. Contribution of each 

term to discrimination was assessed by means of normalized weights. The 

sequence-conservation score contributes the most to the total score (52%), 

and the hydrogen bond energy (18%) and the sidechain entropy (13%) fo llow. 

Contributions by DFIRE and solvation term are almost negligible. 

 

 The score regions for the five categories were determined based on the distributions 

of the binding and unbinding complexes as follows: binds (< -8.0), likely to bind (-8.0 

~ -6.0), uncertain (-6.0 ~ -1.0), likely not to bind (-1.0 to 0.0), and does not bind 

(>0.0). 
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Group 9 (Thomas Bourquard, Julie Bernauer, Anne Poupon, Jérôme Azé, 

INRIA AMIB / INRA Tours, France) 

 

Our method relies on the use of machine learning to build a scoring function 

able to discriminate between native or “near-native” structures and decoys. 

The native structure set contains 211 native complex structures. The set is 

made of 187 bound-unbound and unbound-unbound complexes described in 

a previous study28 updated with newly determined structures. 

 

Non-native structures (or decoys) used to train the procedure were generated 

with an in-lab geometric generation procedure. Like in our previous work29-31, 

a coarse-grained model with one point per residue, called node, is used. For 

each complex, the Delaunay triangulation of the partners’ nodes is computed 

using CGAL (http://www.cgal.org) and its dual, the Voronoi tessellation is 

build. A pseudo-normal vector is then built for each node by summing the 

vectors corresponding to the neighboring edges in the triangulation oriented 

towards the solvent and having a fixed length of 6.5 Å. For each possible pair 

of vectors (one in each partner), the ligand partner is translated and rotated to 

bring the two vectors point to point and in opposition. The ligand is then 

rotated around this axis and a conformation is built every 5Å.  This method 

does provide near-native solutions for all tested complexes. For each native 

structure, decoys having an interface area larger than 400Å² for which enough 

parameter categories were represented and having a RMSD larger than 10 Å 

relatively to the native structure were kept. 

 

96 training attributes were considered based on the properties of the residues 

and pairs present at the interface. For pair attributes, residues are binned in 

six categories: hydrophobic (ILVM), aromatics (FYW), small (AGSTCP), polar 

(NQ), positively (HKR) and negatively charged (DE). The attributes are: the 

Voronoi interface area, the number of residues at the interface, the fraction of 

each residue type at the interface, the mean Voronoi volume of the interface 

residues, the fraction if each pair type at the interface, the mean interface 
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node-node distance, the fraction of interface residues for each category and 

the mean Voronoi volume of interface residues for each category. 

 

Learning is performed using a genetic algorithm optimizing the area under the 

ROC (Receiver Operation Characteristics) curve. We used a ?+µ scheme, 

with 10 parents, 80 children and 500 generations and classical cross -over and 

auto-adaptative mutations. The scoring functions are expressed as 

S(conf)=wi|xi(conf)-ci| where for each attribute xi, wi and ci are the weight and 

centering value respectively. These attributes are optimized through the 

learning procedure.  All functions were learned in a 10-fold cross-validation 

setting. 

 

The strategy has proven effective in previous work29; 31 and in the previous 

CAPRI rounds. To evaluate whether our scoring function can be used to 

predict association, we evaluated its performance relatively to the binding 

affinity benchmark published in the study by Kastritis et al.32. In its raw 

version, the scoring function performs slightly better than PISA. We decided to 

use this strategy in its raw  form for the Rosetta decoys (no special learning 

was made). As no clear signal was observed to discriminate between the 

binding categories offered, we defined them according to the score 

distribution obtained on the ZDOCK 3.0 benchmark. A score above the 3rd 

quartile is considered representative of the first category “1-binds”.  A score 

above the median but below the 3rd quartile was labeled “2 -likely to bind”.  A 

score between the median and the mean was considered “5-uncertain”. A 

score between the 1st quartile and the mean was labeled “3-likely not to bind”. 

A score below the first quartile was labeled “4-does not bind”.  On average 

Rosetta decoys scores show that they are less likely to bind than the ZDOCK 

3.0 benchmark examples. 
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 Group 10 (Seren Soner1, Sefik Kerem Ovali1, Pemra Özbek1, Nir Ben 

Tal2, Türkan Haliloglu 1, 1Polymer Research Center and Chemical 

Engineering Department, Bogazici University, Bebek - Istanbul, Turkey, 
2Department of Biochemistry and Molecular Biology, The George S. 

Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel) 

 

We used the Anisotropic Network Model (ANM)33; 34 to predict the residue 

fluctuations and collectivity of the motion35 in the bound versus unbound states of the 

chains in the complex structures of the ZDock Benchmark and Design datasets. The 

premise is that the global mode of motion of a complex structure results from the 

collective participation of substructures or chains, where the chain’s degree 

collectivity could be expected to increase upon formation of the biological complexes 

in the Benchmark set but not in the Design set. 

 

In the ANM33, where the protein structure is modeled as an elastic network, the 

correlation between the residue fluctuations iR∆ and jR∆  of residues i and j is 

calculated as ( ) [ ] ( ) [ ]∑ −− ==∆⋅∆
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Here H-1 is the inverse of the Hessian matrix. uk and ?k refer to the eigenvectors and 

eigenvalues of 3N-6 modes, respectively, N being the number of residues. The degree 

collectivity (K) of a motion by any individual mode k is defined as proportional to the 

exponential of “the information entropy” of the eigenvector k35.  
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The normalization factor a is chosen such that ∑ ∆
N

i
i
2Rα  equals one. In the most 

collective motion all ? Ri
2 are expected to be identical, and K approaches 1, whereas in 

the extreme local motion K approaches zero for a large chain (K = 1/N). Here we 

considered only the fluctuations in the slowest mode to estimate the collectivity of the 

motion of the chains in the bound and unbound states. The unbound state was taken as 

the co-crystal structure of the complex. 
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The increase in degree collectivity of chains A and B upon complex formation and the 

difference in the increase in degree collectivity between chains A and B, DiffColl, 

was calculated for both Benchmark and Design datasets. The increase in chain A’s 

collectivity upon binding was noticeably lower in the Design set than in the 

Benchmark set, whereas chain B’s collectivity was higher in the Design set than in the 

Benchmark set. Further, the collectivity increase between the two chains of a given 

complex structure was more similar in magnitude in the Benchmark set than in the 

Design set. DiffColl, which is the difference between the increase in the degree 

collectivity of chains A and B, appears as a plausible measure to identify the 

biological complexes. A success rate of 72 % and 71 % was obtained for the 

Benchmark and Design datasets, respectively, with the following criteria: Binds if 

DiffColl > 0; Likely to bind if -0.24 < DiffColl < 0; Likely not to bind if -0.35 < 

DiffColl < -0.24; Does not bind if  DiffColl < -0.35. 

 

Overall the results suggest that the global dynamics is a major discriminant of 

biological association. It is very encouraging that a single criterion, based on first 

principles, is useful for discrimination between true complexes and artefacts. 

Hopefully, it could be integrated with measures of other qualities of protein 

complexes to improve the overall performance.  

 
 

 

Group 11 (Howook Hwang, Thom Vreven, Brian G. Pierce, Zhiping Weng, 

University of Massachusetts Medical School, Worcester, MA, USA) 

 

We applied the ZRANK scoring functions for re-ranking developed in our 

laboratory. This includes the original version of ZRANK 36, ZRANK extended 

and reparameterized to score structures that are refined using Rosetta 

(ZRANK 2.0) 37, as well as the recent function that combines atomic and 

residue based terms (IRAD) (in preparation). The ZRANK functions are linear 

combinations of weighted terms, and we did not optimize scoring functions for 

this specific goal, although the datasets that were used to determine some of 

the components did include cases from the Benchmark. ZRANK requires the 
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structures to include hydrogens, which were added using the Rosetta 

package38. 

Based on the area under the ROC curve (AUC, with cases from the 

Benchmark as positives, and the designed cases as negatives) of the ROC 

curve (with cases from the Benchmark as positives, and the designed cases 

as negatives), the original ZRANK function performs the best of the three 

functions, although the differences a re not large. This function was therefore 

selected for comparison with the methods from other labs. To better 

understand the performance of ZRANK, we also calculated the AUC’s of the 

individual terms of ZRANK, as well as the count of atom contacts between the 

binding partners, with a 6 Å cutoff, as a measure of interface size. We found 

that the ZRANK terms that strongly correlate with the interface size (attractive 

van der Waals, attractive electrostatic interaction, and the 6 Å binding partner 

contact count) all perform as well or better than the complete ZRANK function. 

It is clear that the main discriminating feature between the positives and 

negatives is the size of the interface. The interface sizes of the designed 

complexes are smaller than typically observed in the Benchmark, which may 

be related to the design process itself. 

Because the set of complexes contains 120 cases known to bind, the top 60 

scoring were assigned a ‘binding’ normalized score, and the next 60 ‘likely to 

bind’. The remaining 87 predictions were distributed in three sets of 29 

predictions over the ‘uncertain’, ‘likely not to bind’, and ‘does not bind’ 

categories. 

 

Group 12  (Laura Pérez-Cano, Carles Pons, Juan Fernández -Recio, 

Barcelona Supercomputing Center, Spain) 

 
We have checked our standard pyDock scoring function39 on the set of cases 

with experimentally determined protein-protein binding affinity collected by 

Kastritis and Bonvin32, We used the 77 complex structures that were 

minimized with Rosetta (to use the same minimization protocol as the 

provided non-binders). Although the correlation between pyDock energy and 

the experimental values on the global set was quite low ( r = 0.21), when we 

considered only those cases in which the experimental energy was obtained 
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by ITC studies, the correlation was much larger (r = 0.76). Interestingly, we 

observed that the individual energy terms in pyDock scoring function (pyDock 

energy = electrostatics + desolvation + van der Waals ) showed different 

correlation levels with respect to the experimental data (r = 0.69 for 

electrostatics; r = -0.27 for desolvation; r = -0.04 for van der Waals ). This 

suggested that although our scoring function was optimized for the 

identification of near-native orientations in rigid-body docking, it might be still 

improvable for the prediction of binding affinities. Given the insignificant 

correlation of the van der Waals term with the experimental values, and the 

positive and negative correlation of the electrostatics and desolvation terms, 

respectively, we defined a binding affinity predictor function pyDockAFF as 

follows, without any further optimization of weighting factors to avoid over-

training: 

 

pyDockAFF = electrostatics - desolvation     (1) 

 

We then established confidence thresholds for pyDockAFF based on the capability to 

discriminate strong from weak binders in the 77 cases compiled by Kastritis and 

Bonvin [2] and minimized with Rosetta. For that, we arbitrarily defined strong or 

weak binders as those with experimental binding energy smaller or higher than -8 

kcal/mol (i.e. µM affinity), respectively. We observed that the median value of 

pyDockAFF for the strong binders was around -15 kcal/mol (that is, half of the strong 

binders had better pyDockAFF value), so we decided to use this cutoff to classify the 

cases as "binders". Similarly, we observed that the median value of pyDockAFF for 

the weak binders was around 0.0 kcal/mol, so this value could be used to separate 

binders from non-binders. Thus, we defined as "uncertain" those with pyDockAFF 

values between -5 and +5 kcal/mol. As for the other categories, we just chose the  

values that generated same sized intervals. The summary of categories (and the 

corresponding score numbers in our submission) is the following: "binds" (score 1): 

pyDockAFF < -15.0; "likely to bind" (score 2): -15.0 < pyDockAFF < -5.0; 

"uncertain" (score 5): -5.0 < pyDockAFF < +5.0; "likely not to bind" (score 3): +5.0 < 

pyDockAFF < +15.0; "does not bind" (score 4): pyDockAFF > +15.0. 
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Group 14 (F. Jiang and co -workers, Institute of Physics, CAS, China) 

First, 120 bound structures from the ZDock Benchmark 3.040 as provided in 

the Rosetta-relaxed conformations 38 were used to develop a set of linear 

regression weights to calculate a combined score. This was done by a 

simulated annealing program IntfacMove, which allows sampling of different 

rigid body configurations and side chain rotamers. 2000 steps were simulated 

for each complex to generate near-native conformations. The potential energy 

terms included were (1) van der Waals interaction, for which 6-8 potential was 

used. (2) electrostatic interaction, which is Coulomb potential with a distance-

dependent dielectric constant. (3) solvation effect, which is calculated by 

counting the number of atoms buried by the interface according to atom types, 

for which DeLisi41 18 atom types were used. (4) atomic contact potential as 

defined by DFIRE22. (5) atomic contact matrix with three element types, 

namely, polar-polar, nonpolar-nonpolar and polar-nonpolar. (6) hydrogen 

bond matrix with three element types, namely, acceptor to donor, acceptor to 

acceptor or donor to donor, and acceptor or donor to other atom types. (7) 

center-of-mass attraction between the ligand and the receptor, implemented 

as a harmonic potential. (8) atomic pair contact repulsion at the interface, 

implemented as a harmonic potential. (9) many-body interaction between 

nonpolar atoms; (10) many-body interaction between charged atoms; (11) 

many-body interaction between hydrogen bond donors and acceptors. Many-

body interaction for 4 -body (node) graphs is calculated by counting the 

number of different graphs with different topologies. Many-body interaction for 

5, 6, and 7-body graphs is calculated by counting graphs with different 

number of interaction edges. Only up to 7 -body interaction graphs are 

considered. These potential energy terms were used as the free variables to 

fit the experimental value in the linear regression. The experimental value is 

fnat, the fraction of native atomic contacts relative to the input starting 

structure of the simulation by IntfacMove. From the merged results of 120 

simulations, a set of overall weights was obtained, independent of the 87 

designed structures and other decoys. The correlation coefficient of the linear 

regression fit is 0.794. Inclusion of many-body interaction seems to be 

significant in the final scoring, although its effect on the correlation coefficient 
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is moderate, 0.76 if not including the many-body interaction terms in the 

potential energy. 

Then, both the 87 designed and 120 Benchmark structures were calculated 

for the combined fnat-like scores. These scores were then converted to z -

scores using an average and standard deviation as background noise 

calculated by generating 80 decoy structures provided by ZDOCK340 and 

simulating with the same procedure IntfacMove as for the 120 Benchmark 

structures as described in above. The classification of binding is determined 

by z-score: in the range of [-inf, -3]=bind; (-3, -2]=likely to bind; (-2, -

1]=uncertain; (-1, -0.5]=likely not to bind; (-0.5, +inf)=do not bind. Out of the 

120 Benchmark structures, only two were in the wrong category: one (2PCC) 

was in category 4 and one (2OOB) in category 3. For the 87 designed 

structures, two were in category 3 and none in category 4. Most of them, 64.4 

%, were in category 5, while for the Benchmark structures, the percentage 

was 30%. For category 1, the percentage of the Benchmark and the designed 

were 40% and 3%, respectively, while for category 2, they were 28% and 

30%. 

 

Group 16 (Feng Yang, Xinqi Gong, Libin Cao, Xianjin Xu, Bin Liu, 

Panwen Wang, Chunhua Li, Cunxin Wang. College of Life Science and 

Bioengineering, Beijing University of Technology, 100124, China.) 

 

In order to discriminate the native interfaces from non-native ones, we first tried 

to analyze all the complexes qualitatively using two methods. In one method, the 

interaction patches across interfaces were analyzed using our prediction method for 

the binding site patch42. The complexes whose binding sites are not consistent with 

the predicted ones were classified as non-binders. In the other method, we calculated 

interface areas and defined those structures with interface areas less than 1200 Å2 as 

the non-native ones. 

But both methods mentioned above cannot produce quantitative scores for every 

structure. Therefore, we used two scoring functions, HPNCscore43 and rpscore44, to 

evaluate all the decoys. To test the discriminative power of these two functions, we 

applied them on the constructed database containing 120 correct and 120 wrong 

protein-protein complex structures. From the distribution results of the correct and 
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wrong structures, we found that rpscore has the better prediction ability and hence we 

used the rpscore values as the raw scores of decoys.  

According to the rpscore values of 207 structures combined with the qualitative 

analyses mentioned above , we empirically defined the five normalized categories as 

following: the models with raw value = -13.70 are categorized as “does not bind”, -

16.50 = raw value < -13.70 are categorized as “likely not to bind”, -20.00 = raw value 

< -16.50 are categorized as “uncertain”, -21.05 = raw value < -20.00 are categorized 

as “likely to bind”, raw value < -21.05 are categorized as “bind”. 

 

Group 17 (Charles H. Robert and Mainak Guharoy, Laboratoire de 

Biochimie Théorique CNRS-UPR 9080, Institut de Biologie Physico-

Chimique, Paris, FRANCE). 

Our model uses evolutionary information to score protein complexes. We had 

previously shown that the interface core is more conserved than the rim 

region in most biologically relevant complexes. A dataset of crystal contacts 

served as a negative control in that study, showing that no such distinction of 

core versus rim was seen in non-specific interfaces45. 

For the current challenge of discriminating ‘binders’ from ‘non-binders’, the 

ZDock benchmark of native protein complexes was used as binders for 

training. The non-binders consisted of docking decoys obtained using ZDock 

to dock the paired components. None of the CAPRI 21 designs were used in 

the training. 

Evolutionary information for each protein was obtained in the form of multiple 

sequence alignments from the HSSP database46, which for each PDB entry 

provides a multiple sequence alignment for structurally homologous proteins. 

For the designed complexes, we first performed a BLAST47 search to identify 

the closest homolog in the PDB in order to obtain a representative alignment. 

Using the multiple alignment, sequence entropy values were calculated for 

each individual interface residue (both in the core and rim). Interface residues 

were identified based on the change in solvent ASA upon separating the 

components in the complex – any residue gaining more than 0.1Å2  ASA was 

considered to belong to the interface48. Mean entropy values <s> were then 

calculated separately for the core and rim regions after weighting the 

individual entropy values by the corresponding residue DASA, and the ratio 
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<s>core/<s>rim is obtained. More detail can be found in49 . For biological 

interfaces <s>core/<s>rim  is generally less than 1.0, implying that the core is 

more conserved on average than the rim49. 

Scoring was performed by a simple binary method. Mean core/rim entropy 

ratios were calculated both for the set of native ZDock complexes and for the 

set of decoy structures. The average of these two means was taken as a 

threshold value – an entropy ratio lower than the threshold was taken as 

indicating a ‘binder’ (we assigned these cases to the category ‘likely to bind’), 

whereas an entropy ratio greater than the threshold was taken as indicating a 

‘non-binder’ (assigned to the category ‘likely not to bind’). Using this simple 

scheme, 54% (47/87) of the designs were scored "likely to bind", versus 77% 

(95/124) of the Rosetta -minimized native complexes. 

 

Group 20 (Shiyong Liu, Yangyu Huang, Lin Li , Dachuan Guo, Ying 

Chen, Yi Xiao, Huazhong University of Science and Technology, China). 

 
Our scoring function DECK-X here is evolved from a knowledge -based potential 

DECK50. In DECK, each residue is represented as one pseudo-atom, the centroid of 

the side chain(SCM). In order to capture more interactions between residues, two 

points (CA and SCM) are used in our current scoring function DECK-X. 

DECK-X = w1*E11+w2*E12+w3*E21+w4*E22+w5*Nclash 

( )mn ij
i j

E mnε= ∑∑  

 Where mnE  (m=1, 2; n=1, 2) is the interaction energy between CA (m=1) or SCM 

(m=2) of residue i and CA (n=1) or SCM (n=2) of residue j from receptor and ligand, 

respectively.   Nclash is the number of clashes of the protein-protein interface. ( )ij mnε  

is derived from the following equation: 

 
*

( , , ( , ))
( ) ln

( , , ( , ))ij
p i j d m n

mn RT
p i j d m n

ε = −  

 p(i, j, d(m, n)) is calculated from near-native decoys (ligand RMSD less than 5 Å). 

Our reference state p*(i, j, d(m, n)) is calculated from non-near native decoys (similar 

to RAPDF51, PIPER52, DARS53). 

In order to optimize 5 parameter, our target function is adapted from the term G154 in 

the following: 
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Where R(k,j) is the LRMSD of jth decoy structure of kth training protein -protein 

complex. Np (=5) is the number of undetermined parameters (w i values) of DECK-X. 

Ei(k,j) is the scoring term related to the parameter wi. ( ) 10000

j 1
= 1/10000

j=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑  

 

We tried to maximize the correlation coefficient between the LRMSD and the total 

binding energy for 3487680 GRAMM-X55 docking decoys of 351 protein-protein 

complexes. The L-BFGS method (http://chokkan.org/software/liblbfgs) is used to 

solve the minimization problem. Finally, we got a set of parameters: {w1, w2, w3, 

w4, w5} = {-4.654474, 2.209604, 2.561927, 3.677414, 0.733294 }. Then, the CAPRI 

Scoring target was tested by our DECK-X directly. Finally the DECK-X score was 

translated to a normalized score as following: 

Normalized score is set as 1 when -785 < DECK-X < -401; it is set as 2 when -386 < 

DECK-X < -308; it is set as 3 when -296 < DECK-X < -202; it is set as 5 when -198 

< DECK-X < -100; it is set as 4 when -100 < DECK-X < -22. 

These bins are selected arbitrarily according to experimental information: most 

designed protein-protein complexes do not show binding at all. 

 

 

 

Group 21 (Nir London, Zohar Itzhaki, Ora Schueler-Furman, Department 

of Microbiology and Molecular Genetics, Institute for Medical Research 

Israel-Canada, Hadassah Medical School, The Hebrew University, POB 

12272, Jerusalem, 91120 Israel.) 

In order to select a metric that would be able to discriminate between the 

native interfaces of the benchmark 3.0 complexes to the models of non-

binding designs, we assessed different realistic interface descriptors on the 

entire set of interfaces. The discrimination ability of each desc riptor was 

measured as the area under the curve (AUC) for a receiver operator 

characteristic (ROC) plot, in which the ZDock Benchmark 3.0 complexes were 
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considered as 'binders' and the set of interface designs were considered as 

'non-binders'. This is similar to the approach we described for FunHunt - an 

algorithm to discriminate between true and false binding funnels, and a 

description of the different parameters can be found therein 56. 

 

We list the evaluated features, in decreasing discrimination ability (AUC in 

parentheses): Polar solvent accessible surface area (SASA) buried at the 

interface (0.85) - Designs display smaller buried polar SASA; Interface 

solvation energy (0.85) - Designs display better solvation energy as evaluated 

by Rosetta; Total SASA buried at the interface (0.82) - Designs display an 

overall smaller interface size; Interface attractive Van-der-Waals (VDW) term 

(0.78) - Native complexes display somewhat better ‘attractive’ values; 

Interface repulsive VDW term (0.76) - Native complexes display somewhat 

worse ‘repulsive’ values; Apolar solvent accessible surface area (SASA) 

buried at the interface (0.76) - Designs display smaller buried a-polar S ASA; 

Unsatisfied backbone hydrogen bond donors/ acceptors buried at the 

interface (0.69) - Native interfaces display somewhat less such unsatisfied 

groups; Interface hydrogen-bond energy (0.68) - Native interfaces display 

better hydrogen bonding energy; Rosetta interface DDG (0.66) - Native 

interfaces display better DDG’s; Statistical pair potential (0.58) - Native 

interfaces show slightly better pair potential. 

 

We chose the metric of polar solvent accessible surface area buried at the 

interface as a discriminator between native complexes and designed 

complexes, resulting in the highest AUC discrimination value. While other 

terms that show similar discrimination might indicate problems in the Rosetta 

energy function (such as the solvation term which shows better values for 

designs), this measure shows the best discrimination between the benchmark 

3.0 complexes and the designed interface and is based on a realistic physical 

measure. 

 

Calculation of polar solvent accessible surface area buried at the interface: 

For a protein complex AB, the measure of polar solvent accessible surface 

area (SASA) buried at the interface of proteins A & B is calculated by taking 
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the difference between the polar SASA of the complex AB and the individual 

free partners: Buried polar SASA = Polar SASA(AB) - polar SASA(A) - polar 

SASA(B). The polar SASA of a given protein is calculated by rolling a probe of 

radius 1.4A over the surface of the protein. The fractional exposed surface 

area of each atom is calculated based on ref. 57. Each atom is categorized as 

polar or apolar, and the polar SASA is the summation of the fractional 

exposure of all polar atoms. 

 

Group 22 (Gideon Schreiber,  Yuval Inbar, Mati Cohen, Vladimir Potapov) 

A number of supervised learning techniques utilizing different scoring 

functions were used to distinguish between interacting and non-interacting 

complexes. Any supervised learning technique relies on an input vector, in our 

case various scoring features of protein complexes, and an answer vector, in 

our case the classification of the complexes. Since we lack the binding 

energies for some native and for all decoy complexes, we decided to classify 

them only into binding and non-binding rather than 5 different classes. 

Moreover, we have focused on minimizing the false binders rate, as there are 

many more false than true complexes in a realistic scenario. 

Training set: In order to distinguish between interacting and non-interacting 

proteins, we constructed native and decoy data sets. The native data set was 

the ZDOCK  sets number 2 and 340. To introduce a variation in the decoy set 

we joined two different types of non-binding complexes. The first is a 

collection of crystal contact complexes58. The second is a collection of mis-

predicted docking solutions of the Rosetta group as submitted in a previous 

CAPRI round59. Only submissions with more than 4Å RMSD from the native 

complexes were included. All complexes, negative as well as positive ones, 

underwent rotameric minimization using the Hunter energy function. 

Scoring functions: 24 different scoring features of various interface properties 

were considered. These include; interface area, electrostatic energy of 

interaction (calculated by PARE60), side chain interaction (evaluated by 

Hunter), rotameric probabilities, solvation and Lennard-Jones (for more details 

see 61), as well as residue contact map score (see below for details) and 

geometric score. 
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Contact Map Score: An accumulative residue contact map represents the 

number of contacts between the residues type pairs. We define a contact by 

the minimum distance between sidechain atoms (if it is less than the sum of 

VDW radii + 1.8 Å). Given the residue interface composition of both proteins, 

we can compute an expected contact map based on statistics that were 

extracted from contact maps of solved structures. We score a given contact 

map based on the difference between the contact values of the given and 

expected contact map, as defined by equation (1) for contact map score 1: 

(1)              

 

Where X is a 20x20 matrix that represents the accumulative residues contact 

map (xi j is the number of contacting residue pairs of type i and j, where the 

residues of type i  and j belong to molecules 1 and 2 respectively). I1 and I2 

are the interface composition vectors of molecules 1 and 2 (Ik is the number of 

residues of type k in the interface).  is the expected number of contacts 

between the residue types i and j, and  is its standard deviation. We 

compute the expected value and the standard deviation by assuming a 

binomial distribution of the contact number over the number of potential 

contact pairs   and the probability pi j of a pair to be in contact given 

they are in the interface.  Hence,  and . 

The values for the different pij ‘s were computed using the observed contact 

maps of 620 non-redundant native complexes (30% identity or less). 

Contact map score 2  is also based on the difference between expected and 

observed values, however it favors contacts between frequently contacting 

residues. 

Learning: We tested three different supervised learning techniques 

1.Decision tree learning (MathLab); 2.Linear classifier (an in-house algorithm)  

and 3. LIBSVM a support vector machine (SVM) algorithm. 

The best results were achieved using SVM algorithm limiting the combinations 

to up to 16 different scoring features (preferable less). The optim al 

combination consisted of 7 features: PARE, Hunter, surface area, non-polar 
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interface area, knowledge based contact scores 1 & 2 and the number of 

interacting pairs. The SVM correctly classified 56 out of the 120 native 

complexes and, more importantly, 216 out of 224 decoys (only 8 false 

positive). When applied on the designed set it has wrongly classified 4 as 

positive (probably false) out of 87. Since our main objective was to minimize 

the false positive we find its performance satisfying. 

 

Group 23 (Yuko Tsuchiya1, Eiji Kanamori2, Daron M. Standley3, Haruki 

Nakamura1, Kengo Kinoshita4, 1Institute for Protein Research, Osaka 

University, 2Japan Biological Informatics Consortium, 3Systems 

Immunology Lab, WPI Immunology Frontier Research Center (IFReC), 

Osaka University,  4Graduate School of Information Sciences, Tohoku 

University) 

Our scoring method is based on the interface complementarities in terms of 

the hydrophobicity and the electrostatic potential on the molecular surfaces of 

proteins and the shape of the surfaces. We use a linear combination of the 

degrees of complementarities for the three properties as a complementarity 

score of an interface, 

cmpcmpcmpcomp SE.H.SCR ×+×+×= 112.054403430           Eq. 1 

where Hcmp , Ecmp, and Scmp represent the degrees of complementarities  for the 

hydrophobicity, the electrostatic potential and the shape, respectively. These 

complementarities are calculated as follows; (1) at each vertex on the 

molecular surface of each component protein of a complex, the 

hydrophobicity, the electrostatic potential, and the shape are calculated62. (2) 

In each interface, the numbers of complementary inter-subunit vertex pairs 

that have shorter distances than 3Å are counted for the three properties, 

respectively; Nele is the number of complementary (positive and negative) 

vertex pairs for the electrostatic potential, Nhyd is that of hydrophobic and 

hydrophobic vertex pairs, Nshape is that of convex and concave vertex pairs, 

and Ntotal is the total number of all inter-subunit vertex pairs in an interface. (3) 

The ratio of the number of complementary vertex pairs to the total number of 

the vertex pairs in the interface, is defined as the complementarity for each 

property, such as Hcmp=Nhyd/N total. 
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The optimization of the weights in Eq. 1 has been performed by using the 

docking models for the 74 representative hetero -dimers63. We prepared up to 

500 models for each hetero -dimer by our docking method64 as a training 

dataset, and optimized the three weights so that the discrimination between 

the native -like models that have a rmsd<10Å from the native complexes and 

the other models in the training set could be performed with maximum 

accuracy. 

 

To add the effect of the size of the interface, we used the index that shows the 

fitness of interface surfaces, which is one of the terms of the score calculated 

in the docking64. The value of the cumulative distribution function for the index 

of the surface fitness is defined as an additional score, SCRsurf, which is 

calculated based on the values of the surface fitness of the native-like models 

in the training set. 

 

We used the linear discriminant function of SCRcomp and SCRsurf as the final 

score, SCRfinal. The function was constructed based on the SCRcomps and the 

SCRsurfs of the native -like models and the other models in the training set. 

)43.0(65.1)43.0(83.6 −+−= surfcompfinal SCRSCRSCR           Eq. 2 

In principle, this function judges the model with a positive score as a native or 

a native-like model, and that with a negative score as a non-native model. 

However, we empirically defined the five normalized categories as follows; the 

model with SCRfinal =0.5 is categorized as “bind”, 0= SCR final <0.5 as “likely to 

bind”, -0.5= SCR final <0 as “uncertain”, -1.0= SCRfinal <-0.5 as “likely not to 

bind”, and SCRfinal <-1.0 as “does not to bind”. 

 

 

Group 24 (Camden M. Driggers1, Robert G. Hall2, Jessica L. Morgan1 and 

Victor L. Hsu1, 1Department of Biochemistry and Biophysics, 
2Department of Biological and Ecological Engineering, Oregon State 

University, Corvallis, OR, USA) 

 

The designed protein complexes were binned based on a scoring function derived 
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from the protein-protein docking benchmark dataset40. The intermolecular and total 

energetic components of the 124 benchmark complexes and the 87 designed 

complexes were determined with HADDOCK65. These included terms corresponding 

to bond, angle, dihedral and improper energies, Lennard-Jones and electrostatic 

potentials, intermolecular van der Waals and electrostatic energies, desolvation 

energy and the buried surface area of the complex. Weighted values for these metric 

terms in the scoring function were empirically derived from a randomly selected 

subset of the benchmark dataset from which single clusters of acceptable complex 

structures were used (approximately 1000 structures including the selected crystal 

structures, the HADDOCK active and passive residues were determined by inspection 

of the respective crystal structures). These weighted values were refined by 

comparison to the corresponding values determined from a set of randomly generated 

(typically unacceptable) complex structures based on the same benchmark subset. 

 

For the designed complexes, a short optimization was performed using HADDOCK, 

and each complex was binned into one of four binding categories based on its scoring: 

“binds” if score < 7.0; “likely to bind” if 7.0 = score < 8.0; “likely not to bind” if 8.0 

= score < 9.0; “does not bind” if score = 9.0. Of the 87 designed complexes, 30 were 

determined to “bind”, 18 as “likely to bind”, 14 as “likely not to bind” and 25 as 

“does not bind”. Of the 124 benchmark complexes, 90 were determined to “bind”, 13 

as “likely to bind”, 13 as “likely not to bind” and 8 as “does not bind”. Work is in 

progress to refine the weighted scoring function by incorporating polarity and 

structural and neighboring propensities using a machine learning approach, at which 

time the complex structures will be re-evaluated. 

 

Group 26 (Jian Zhan, Yuedong Yang, and Yaoqi Zhou, Indiana University 

School of Informatics, Indiana University Purdue University at Indianapolus, 

Center for Computational Biology and Bioinformatics, Indiana University 

School of Medicine) 

Our main scoring function is based on a knowledge-based energy function with the 

distance-scaled finite ideal-gas reference state (DFIRE)22 with a fine distance grid of 

0.5Å66. Its application to predict binding affinity of protein-protein complexes is made 

by calculating the DFIRE energy for interacting atomic pairs at the interface16. The 

interface cutoff distance (7.0Å) was optimized by employing the dataset established 
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by Kastritis and Bonvin32. This dataset is a subset of Zdock Benchmark and contains 

81 protein-protein complexes with known experimental binding affinities. The 

optimized correlation coefficient between predicted binding affinity and experimental 

binding affinity is 0.233. The DFIRE energy function was applied to 120 native 

complexes and 87 designed models relaxed by Rosetta and its Mathews correlation 

coefficient for separating native complexes from designed models is 0.485 with an 

optimized energy threshold (-4.0). To refine our prediction, we further employ the 

orientation components (OC) of the dipolar DFIRE (dDFIRE) potential function67 that 

approximates polar atoms as points with directions defined by covalent bonds. This 

orientation component together with DFIRE separates targets into 4 regions that are 

scored as1 if EDFIRE<-4.0, EOC<-9.5, 2 if EDFIRE<-4.0, EOC>-9.5, 3 if EDFIRE>-

4.0, EOC<-9.5 and 4 if EDFIRE>-4.0, EOC>-9.5. The threshold for the orientation 

component of dDFIRE was also from optimizing the Mathews correlation coefficient. 

 

Group 28 (Panagiotis L. Kastritis and Alexandre M. J.J. Bonvin, Bijvoet Center 

for Biomolecular Research, Utrecht University, The Netherlands) 

For the purpose of this experiment, a physics-based potential was developed 

for predicting the binding affinity of the designed complexes and of those from 

the protein-protein docking benchmark. For all 207 complexes, a short 

optimization step was performed using the refinement interface of the 

HADDOCK web server68 as previously described32. We then calculated 

theoretical dissociation constants (-logKd’s) for all complexes using the 

following equation: 

 

-logKd = (wa*Evdw+ wb*EElec+ wc*EHb+ wd?GDesolv+ we*BSA)*F (1) 

 

where Evdw, EElec, EHb denote the energetic contributions of the intermolecular 

van der Waals, the Electrostatics and the Hydrogen bonds. Evdw denotes the 

Lennard-Jones potential, calculated with HADDOCK65 as previously 

described69. EElec denotes the standard intermolecular Coulombic electrostatic 

potential with a distance-dependent dielectric term equal to 4r5, implemented 

in the FASTCONTACT algorithm 70. EHb is a hydrogen bonding potential, 

originally developed in the Baker lab24 and implemented in the FIREDOCK 

algorithm71. ?GDesolv corresponds to the Lazaridis -Karplus solvation term72, 
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calculated using ROSETTA38; it was calculated as the difference between 

sum of the solvation terms of the free chains and of the complex. BSA denotes 

the buried surface area in Å2, calculated with HADDOCK2.169. Finally, wa – we 

correspond to different weights for each contribution and F is a simple scaling 

factor (Kastritis & Bonvin, manuscript in preparation). 

In order to assess the free energy difference between our theoretical 

calculations that derive from Equation (1) and the original experimental 

values, binding affinities referring to dissociation constants (Kd’s, therefore 

units are in M) were converted into free energies of binding (? rG0), using the 

following equation: 

 

? rG0=2.303RT*(-logKd) (2) 

 

The average error between the theoretical (predicted) and experimental 

binding free energies was expressed in kcal/mol as: 

 

 (3) 

where N represents the total number of complexes for which experimental 

binding affinities are available. 

 

The multiple linear regression model in Equation (1) and its various weight 

factors was parameterized against a dataset of 81 experimentally determined 

protein-protein binding affinity data that we recently published32. During its 

development, we have found that it is not very sensitive to the optimization 

protocol of the structures for which the binding affinity is predicted: for 

example, complexes optimized using HADDOCK give very similar affinities to 

the ones optimized with Rosetta (R 2>0.80, average error = 1.3 kcal/mol). The 

Spearman correlation coefficient between the experimentally determined 

binding affinities and the theoretically calculated ones reach 0.54 (d.o.f. = 79) 

with an average error in their corresponding free energies of binding of 2.3 

kcal/mol (on the 81 complexes from our benchmark). Note that since its 

publication, we discovered some errors in the reported binding affinities. If we 
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only include high -quality data from Isothermal Titration Calorimetry, Surface 

Plasmon Resonance and Spectrophotometric assays, the correlation 

significantly improves with an R=0.80 (d.o.f. = 45). 

 

For the CAPRI round 21 experiment, we binned the 207 complexes in five 

categories according to their predicted binding affinities: 

do not bind: -logKd < 3 

likely not to bind: 3 = -logKd < 5 

uncertain: 5 = -logKd < 7 

likely to bind: 7 = -logKd < 9 

bind: 9 = -logKd  

 

Group 29 (Weiyi Zhang, Carlos J. Camacho, University of Pittsburgh, 

US) 

 

We evaluated the co -crystals and models using FastContact70; 73- 76, one of the first 

free energy based scoring functions used to predict protein interactions. FastContact 

shows almost identical sensitivity and specificity rates when discriminating complex 

structures in the PDB regardless of whether one accounts for changes in van der 

Waals (?Evdw) and/or internal (?Eint) energies, reflecting the optimal complementarity of 

protein-protein interactions. On the other hand, the simultaneous discrimination of 

both co-crystal and model structures improved by 20% with the addition of both 

?Evdw  and ?Eint, in the scoring function, reflecting the shortcomings of refining model 

structures.  

 

In what follows, we refer to FastContact as the formula in Eq. 1 and 

SmoothDock77 scoring as the formula in Eq. 2. 

 

 

where  

?Eelec corresponds to the intermolecular Coulombic electrostatic potential with 

a distance-dependent constant equal to 4r, and ?Gdes is an empirical 

desolvation contact free energy that account for the hydrophobic interactions, 
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the self-energy change upon desolvating polar groups and the entropy loss of 

transferring a side chain from a protein surface to a bound conformation41. 

?Evdw and ?Eint  correspond to the change in van der Vaals and internal 

energy upon binding, where Evdw and Eint are computed by CHARMM force 

field after 20X3 energy minimization using ABNR (adopted basis Newton-

Raphson) steps and the CHARMM-19 potential with polar hydrogens only, 

distance-dependent dielectrics e = 4r, and fixed backbone. We note that our 

scoring function does not account for translational, rotational and vibrational 

entropies. 

 

For the screening of ZDock2.0, ZDock3.0 and designed proteins, we set the binding 

free energy threshold for FastContact and SmoothDock  at -21.6 kcal/mol and -

79.0kcal/mol, respectively. Predicted sensitivity rates for ZDock datasets are 57.5% 

(69 true positives out of 120 total) and 58.33% (70 true positives out of 120) for 

FastContact and SmoothDock , respectively. On the other hand, specificity rates for 

designed models improve from a FastContact prediction of 68.97% (60 true negatives 

out of 87 total) to 88.51% (77 true negatives out of 87) when accounting for internal 

and solute van der Waals energies using SmoothDock . It is important to stress that our 

predictions do not involve any prior knowledge of protein -protein interactions, nor we 

made any attempt to incorporate features of the Rosetta scoring function in our 

analysis. 

 

Group 30 (Krishna Praneeth Kilambi, Brian Weitzner, Justin Porter, Aroop 

Sircar and Jeffrey J. Gray) 

We evaluated the following physical parameters for each protein from the set 

of designed and real complexes  

1.       Interface area per residue for each complex 

2.       Number of interface contacts per unit surface area of the complex 

3.       Solvent accessible surface area of the complex 

4.       Polar solvent accessible surface area of the complex 

5.       Van der Waals energy (the Rosetta a ttractive and the repulsive terms in 

the Lennard -Jones Potential were studied independently)  

6.       The solvation penalty (the Lazaridis -Karplus model as implemented in 

Rosetta) 
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The only parameter distribution that displayed noticeable distinction between 

the natural and the designed complexes was the interface area per residue for 

each of the complexes. On an average, the designed complexes were found 

to have smaller Iarea/nres values. The distributions of the all the other 

parameters showed no significant separation between the native and 

designed complexes. 

 

Group 31 (Masahito Ohue, Nobuyuki Uchikoga, Yuri Matsuzaki, Takashi 

Ishida and Yutaka Akiyama, Tokyo Institute of Technology, Japan) 

 

We predicted PPIs by a method that utilized rigid body protein-protein 

docking78. We divided each complex structure into 2 protein chains and re-

docked them by using our docking system named MEGADOCK. Finally, we 

judged whether they interact or not based on the normalized docking score. 

 

MEGADOCK is based on the FFT calculation like ZDOCK79. MEGADOCK 

has the original shape complementarity scoring model called real Pairwise 

Shape Complementarity(rPSC) and CHARMm19 electrostatic model. ZDOCK 

Benchmark complexes are re-docked by MEGADOCK without changing them. 

Designs complexes are divided into chain A and B, then re-docked by 

MEGADOCK. We generated the 3600x3=10800 decoys that include top 3 

decoys for each of ligand orientations (3600 with 15 degree intervals). 

 

Then, we applied ZRANK 36m for the decoys to exclude physicochemically 

unrealistic models and selected the best 2000 models. The re -ranked decoys’ 

MEGADOCK scores are converted to Z-score, as follows: 

σ
µ−= i

i
SZ Si is i-th decoy’s MEGADOCK score, µ is the mean of all decoys’ 

MEGADOCK scores and s  is the standard deviation of the scores. Then we 

calculated the “Raw score” E as 

follows:


 >

=
otherwise

 valuemaximum is  and 6 if

1Z

ZZZ
E kkk    

Finally, the Raw score is normalized, using the following scheme; 1. binds (E 
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> 4); 2. likely to bind (4 >= E > 2.5); 3. likely not to bind (2.5 >= E > 1.5); 4. 

Don’t bind (1.5 >= E). 5. uncertain is not treated in this method. 

 

Group 32 (Raed Khashan, Stephen Bush, Denis Fouches, and Alexander 

Tropsha, University of North Carolina at Chapel Hill) 

   Our method is centered on a simple knowledge-based scoring function that 

utilizes frequent geometric patterns of interacting residues found at the 

interfaces of X -ray characterized protein-protein complexes. 

 

   The approach includes the following steps. First, protein-protein interfaces 

of each complex in the X-ray crystallographic native complexes (we used 

Vakser and co-workers’ Bound Dockground80) are represented by labeled 

graphs where nodes are residues’ centroids and edges connect centroids 

located within certain distance (we used 10 A°) of each other. These 

interfacial residues were identified using Almost Delaunay tessellation81, 

therefore allowing some flexibility in the selection process due to variations in 

residues positions in low resolution crystallographic complexes. Second, 

efficient subgraph mining techniques are used to find frequent subgraphs that 

occur in no less than a certain percentage of the native complexes; these 

frequent subgraphs (or patterns of interacting residues) identify structural 

motifs that we regard as “classical” interacting patterns. 

 

   Thus, given a test set of protein-protein complexes, they can be scored 

based on the interaction patterns found at their interface that match these 

“classical” frequent patterns. The scoring function takes into account the 

frequency of the matching “classical” patterns in the native complexes, their 

size, and the degree of geometrical similarity between patterns in the test 

proteins and their matching “classical” patterns. The scoring function takes 

also into account the number and ratio of interacting residues at test proteins 

interface that found a match w ith the “classical” patterns. These factors can 

be used to derive the following formula for the scoring function: 

 

               N M 

Score = || S S |Pi|/RMSDijpattern|| + ||X1|| + ||X2|| + ||X3|| + ||X4|| 
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                 i j 

 

   Where N is the total number of frequent (”classical”) patterns found at the 

interface, M is the frequency of the pattern i in the set of native complexes, 

and therefore represents the number of modes of interaction (number of 

different internal geometric coordinate sets) for that pattern. |Pi| is the size of 

the pattern Pi (i.e., total number of protein residues in the pattern), and 

RMSDijpattern is calculated for the best fit between pattern Pi in the test 

complex and the matching “classical” pattern. The first summation is over all 

patterns that are found at the interface. The second summation reflects the 

frequency of each pattern and the different modes of in teraction for each 

pattern. Also, to avoid dividing by zero, an epsilon value of 1*10-60 is added 

to the RMSDpattern. (This value is chosen based on the smallest empirical 

RMSDpattern value that was found in our studies.) Other parameters used: 

X1 is the number of interfacial residues found a match with the classical 

patterns. X2 is the ratio of interfacial residues that found a match with the 

classical patterns. X3 is the number of classical patterns found at the 

interface. Finally, X4 is the number of classical patterns found at the interface 

divided by the number of interfacial residues found a match; i.e., the average 

number of patterns matched per one interfacial residue. Therefore, based on 

the formula, one can conclude that the higher the score, the c loser the test 

complex to its native structure. 

 

Group 33 (Juan Esquivel-Rodriguez, Daisuke Kihara, Purdue University)  

The scoring function we used is a linear combination of nine physics -based 

and a knowledge-based potential. The first two terms are the repulsive and 

the attractive parts of the van der Waals potential using the 12-6 Lennard 

Jones potential. The next four terms are the electrostatic potential, which are 

split into repulsive and attractive as well as long and short range terms. The 

other three terms are a hydrogen bonding term, a solvation energy by 

Lazaridis and Karplus72 and a knowledge-based atom contact potential41 . 

Weighting factors of the terms were trained on the decoy set of the ZDOCK 

benchmark 2.079 and a separate set of decoys generated by running ZDOCK 

on the dataset used by Huang & Zou82. Genetic algorithms and the linear 
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regression were used separately, and the best performing model overall was 

selected to generate the final scoring function. 

 

Group 35 (PB Stranges, R Jacak and B Kuhlman.  University of North 

Carolina Chapel Hill) 

To discriminate between the native protein -protein interfaces and the designed ones, 

we chose to use a set of four metrics that can be computed from the structures: 

predicted binding energy per interface area, number of unsatisfied hydrogen bonds 

per interface area, ratio of hydrogen bond energy to total binding energy and the 

RosettaHoles score83. All designed and native structures used in this analysis were 

repacked and minimized using the Rosetta energy function84. 

 

The predicted binding energy was calculated by taking the difference in energy 

between the structure of the complex and the separated binding partners. The area of 

the interface was computed in the same manner.  The first metric, dG/dSASA, was 

obtained by dividing the binding energy by the area of the interface.  The second 

metric, Unsat/dSASA, is the number of buried-unsatisfied polar atoms located at the 

interface divided by the area of the interface. The third metric, HBond energy/dG, is 

the proportion of hydrogen bond energy to the total binding energy.  

 

A normal distribution was fit to each of the described metrics for native structures 

with resolution better than or equal to 2.2 angstroms. The corresponding cumulative 

distribution function for each metric was used to represent a score for how well a 

structure compares to natives.  For each metric a score of 1.0 represents an above 

average comparison to natives while a score of 0.0 represents no correspondence to 

natives. 

 

The final metric is the RosettaHoles score. The RosettaHoles score represents the 

probability that a set of solvent inaccessible voids comes from a high-resolution 

crystal structure.  Voids are determined by finding the largest spherical hole adjacent 

to all buried atoms, pruning away solvent accessible regions, and then clustering the 

holes into contiguous cavities.  The scores for this metric are similar to the previous 

three, with 1.0 being ideal and 0.0 being completely unlike native proteins. 
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The scores for each of the four metrics for all native and designed structures were 

summed to yield the final raw score.  This score ranged between 0.0 and 4.0 with 0.0 

being no correspondence to native interfaces (does not bind) and 4.0 being as good as 

or better than native interfaces (binds). The normalized scores are as follows where 

RS represents the raw score: 4 (does not bind) for RS <1.5; 3 (likely not to bind) for 

1.5<RS<2.0; 2 (likely to bind) for 2.0<RS<2.5; 1 (binds) for RS>2.5. 

 

Some native structures were not evaluated due to problems obtaining a suitable 

minimized structure. 

 

Group 36 (Sheng -You Huang, Xiaoqin Zou,  University of Missouri-Columbia) 

 

ITScore/PP82 was used to evaluate the 87 designed complex models from the Baker 

lab and 120 native complexes of the CAPRI Target T45. There was no parameter 

optimization or training in the pair interaction potentials of ITScore/PP for these 

protein-protein complexes.  

ITScore/PP is an all-atomic distance-dependent knowledge-based scoring function 

derived from a physics -based iterative method that circumvents the long-standing 

reference state problem in the knowledge -based/statistical approaches. The basic idea 

of the method is to improve a set of effective pair potentials by iteration until the 

derived potentials can reproduce the atomic pair distribution functions of the 

experimentally determined complex structures in a diverse training set that is different 

from the current test sets of complexes 85; 86. A second advantage of ITScore/PP is 

that the derivation considers the whole binding energy landscapes of the complexes 

by including both the native structures and decoys according to a Boltzmann 

probability, rather than considering only the energy minima (i.e., native structures) as 

done in conventional knowledge-based scoring functions87. The pair interaction 

potentials in ITScore/PP were derived based on 20 heavy atom types and 851 non-

redundant, biological protein-protein complex structures82. 

 

During the binding score calculations for each protein-protein complex in the 

benchmarks, both protein partners were treated as rigid bodies and were allowed for 

local minimization in their coordinates.  
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Supplemental Tables 

PDB ID  Buried 
surface 
area 

Computed 
binding 
energy 

Native complexes 
1A2K 1640 -19.1 
1ACB 1650 -28.3 
1AHW 2060 -24.2 
1AK4 1000 -17.8 
1AKJ 1990 -17.7 
1AVX 1730 -14.7 
1AY7 1310 -16.8 
1AZS 1980 -23.7 
1B6C 1920 -15.7 
1BGX 6440 -1.6 
1BJ1 1810 -28.2 
1BKD 3250 -39.4 
1BUH 1390 -14.5 
1BVK 1250 -13.0 
1BVN 2250 -19.2 
1CGI 2080 -21.8 
1D6R 1410 -17.6 
1DE4 2340 -5.7 
1DFJ 2540 -23.0 
1DQJ 1780 -16.1 
1E4K 1580 5.4 
1E6J 1250 -16.7 
1E96 1240 -16.7 
1EAW 1940 -10.3 
1EER 2240 -29.3 
1EFN 1310 -10.2 
1EZU 2710 -40.6 
1F34 3350 -32.1 
1F51 2520 -13.3 
1FAK 3150 -32.0 
1FC2 1240 -7.4 
1FQ1 1840 -13.1 
1FQJ 1960 -20.8 
1FSK 1730 -23.0 
1GCQ 1280 -18.1 
1GHQ 750 -9.2 
1GLA 1410 -13.8 
1GP2 2310 -22.8 
1GPW 2260 -20.3 
1GRN 2330 -23.5 
1H1V 2080 -20.1 
1HE1 2080 -19.0 
1HE8 1480 -13.9 
1HIA 1800 -24.2 
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1I2M 2940 -33.4 
1I4D 1710 -12.4 
1I9R 1600 -9.6 
1IB1 2930 -30.7 
1IBR 3640 -24.1 
1IJK 1760 -6.4 
1IQD 2110 -30.2 
1IRA 3500 -27.3 
1J2J 1200 -15.9 
1JMO 3880 -39.7 
1JPS 1990 -25.3 
1K4C 1540 -28.0 
1K5D 2820 -21.3 
1K74 1260 -9.7 
1KAC 1540 -12.2 
1KKL 1650 -10.2 
1KLU 1260 -13.1 
1KTZ 1000 -15.8 
1KXP 3600 -32.4 
1KXQ 2170 -28.5 
1M10 2210 -23.4 
1MAH 2070 -26.1 
1ML0 2440 -33.0 
1MLC 1460 -15.4 
1N2C 3990 -24.4 
1N8O 1920 -31.4 
1NCA 2030 -17.9 
1NSN 1860 -12.7 
1NW9 2050 -32.3 
1OPH 1390 -18.6 
1PPE 1750 -27.1 
1PXV 2400 -39.0 
1QA9 1260 -13.0 
1QFW 1580 -11.8 
1R0R 1440 -29.8 
1R8S 2880 -39.1 
1RLB 1580 -6.9 
1S1Q 1340 -15.0 
1SBB 1250 -16.4 
1T6B 1910 -15.2 
1UDI 2070 -25.3 
1VFB 1400 -20.2 
1WEJ 1200 -15.9 
1WQ1 3120 -15.7 
1XD3 2280 -33.6 
1XQS 2400 -23.5 
1Y64 2510 -11.3 
1YVB 1730 -16.4 
1Z0K 1880 -23.9 
1Z5Y 1370 -22.7 
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1ZHI 1300 -18.3 
2AJF 1800 -15.4 
2B42 2680 -23.9 
2C0L 1930 -19.4 
2CFH 2320 -31.3 
2FD6 1150 -19.1 
2H7V 1570 -9.9 
2HLE 2190 -28.6 
2HMI 1310 -7.2 
2HQS 2410 -28.4 
2HRK 1560 -13.8 
2I25 1450 -26.1 
2JEL 1620 -15.0 
2MTA 1480 -12.4 
2NZ8 2590 -29.1 
2O8V 1680 See note 1 
2OOB 800 -13.2 
2OT3 2380 -40.6 
2PCC 1190 -5.8 
2QFW 1580 -11.8 
2SIC 1710 -23.3 
2SNI 1660 -25.9 
2UUY 1380 -16.9 
2VIS 1450 -13.7 
7CEI 1440 -11.5 
Designed complexes 
design_1 1200 -16.4 
design_2 1200 -13.9 
design_3 1640 -23.4 
design_4 1250 -17.7 
design_5 1240 -14.2 
design_6 1230 -16.0 
design_7 1490 -21.0 
design_8 1280 -15.1 
design_9 1110 -17.9 
design_10 1330 -16.5 
design_11 1360 -19.4 
design_12 1730 -18.7 
design_13 1320 -20.4 
design_14 1110 -16.5 
design_15 1210 -17.3 
design_16 1330 -16.8 
design_17 1230 -17.9 
design_18 1330 -17.7 
design_19 1390 -15.4 
design_20 1930 -23.8 
design_21 1230 -16.7 
design_22 1130 -18.4 
design_23 1300 -20.9 
design_24 1300 -12.6 
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design_25 1030 -12.9 
design_26 1300 -21.9 
design_27 1080 -19.6 
design_28 1080 -14.6 
design_29 1260 -21.5 
design_30 1630 -21.4 
design_31 1040 -14.0 
design_32 870 -14.9 
design_33 1480 -16.6 
design_34 1730 -20.8 
design_35 1760 -24.8 
design_36 1380 -15.0 
design_37 1500 -17.5 
design_38 1520 -24.4 
design_39 1280 -14.0 
design_40 1230 -15.9 
design_41 1260 -15.9 
design_42 1410 -17.8 
design_43 1340 -20.5 
design_44 1510 -20.5 
design_45 1580 -18.2 
design_46 1070 -15.2 
design_47 1320 -19.1 
design_48 1480 -18.7 
design_49 1150 -16.5 
design_50 1160 -16.9 
design_51 1240 -15.1 
design_52 1750 -16.4 
design_53 1500 -21.7 
design_54 1180 -17.1 
design_55 1180 -12.3 
design_56 1130 -17.1 
design_57 1430 -21.4 
design_58 1460 -17.8 
design_59 1350 -22.8 
design_60 1120 -13.4 
design_61 1650 -13.2 
design_62 1440 -17.8 
design_63 1290 -14.4 
design_64 1100 -11.3 
design_65 1510 -22.4 
design_66 1420 -17.0 
design_67 1230 -12.6 
design_68 1200 -13.9 
design_69 1520 -19.8 
design_70 1180 -18.1 
design_71 1410 -11.3 
design_72 1780 -21.9 
design_73 950 -15.6 
design_74 980 -16.2 
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design_75 1170 -13.8 
design_76 1590 -19.0 
design_77 1640 -16.4 
design_78 1080 -15.5 
design_79 1070 -15.5 
design_80 1060 -16.5 
design_81 1490 -18.9 
design_82 1400 -15.5 
design_83 1690 -22.5 
design_84 1420 -17.6 
design_85 1450 -20.7 
design_86 1170 -12.4 
design_87 1180 -20.0 
 

Table S1: Buried surface area (Å2) and computed binding affinity (Rosetta 

energy units; R.e.u.) for the set of native and designed complexes. Values for 

surface area and binding energy were rounded to 10 Å2 and 0.1R.e.u., 

respectively. 

1 Complex of a covalently linked interface, confounding binding energy 

calculations. 
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Table S2 

1FC2 1KAC 1IJK 2FD6 1EFN 1E6J 1Z5Y 1KLU 2VIS 1ZHI 1S1Q 
1ACB 1E4K 1RLB 1GCQ 2PCC 2HMI 1SBB 1AK4 2MTA 1KTZ 1GLA 
1GHQ 1J2J 2OOB 
 
25 PDB entries for hydrophobic interfaces from the docking benchmark. This list of 
structures has the lowest computed desolvation penalty upon binding in the docking 
benchmark. 
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Table S3 
 
Group AUC 
1 64 
2 83 
4 64 
5 69 
6 74 
7 81 
8 64 
9 61 
10 79 
11 53 
12 72 
14 53 
16 59 
17 63 
20 75 
21 62 
22 51 
23 75 
24 73 
26 56 
28 55 
29 51 
30 56 
31 67 
32 68 
33 57 
35 74 
36 60 
 
Area under the curve (AUC) percentages of participants in discriminating designed 
complexes from a subset of hydrophobic natural complexes (Table S2). The 
performance of most groups is worse against this subset of hydrophobic complexes 
than against the entire docking benchmark (Fig. 2).
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Supplemental Figures 

Figure S1 Per-group classification of designed and natural interfaces 

according to their binding propensity. 

 

Figure S2: Misclassification of an active design as a non-binder. Design 45 

was experimentally tested and shown to bind its target after the benchmark 

was completed by the participants2, providing a blind test of the metrics. None 

of the groups predicted that this complex would bind. 
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Figure S1 
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Figure S2 
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